Appendix J1Drainage Report

CITY OF SANTEE

Drainage Report

for

CARLTON OAKS COUNTRY CLUB & RESORT PA-1 (Residential West), PA-2 (Residential North) & PA-3 (Resort Area) TM 2019-1/ DR 2019-5

City of Santee, CA County of San Diego

PREPARED FOR:

ALIKA, LLC 9200 Inwood Dr. Santee, CA 92071 949-929-9123

PREPARED BY:

9707 WAPLES STREET SAN DIEGO, CA 92121 (858) 558-4500

PROFESSIONAL

REGISTERE.

Preparation/Revision Date:

November 7th, 2022/ April 12th, 2023/ February 06, 2024/ June 18, 2024 March 21, 2025/ May 14, 2025

Alisa S. Vialpando, Ŕ.C.E. 47945

President

Hunsaker & Associates

San Diego, Inc.

TABLE OF CONTENTS

1. Intrudoction	2
1.1. Purpose	2
1.2. Existing Conditions	2
1.3. Project Description	3
2. Flood Risk	8
2.1. FEMA Flood Mapping	8
2.2. City of Santee/BSI Flood Mapping	10
3. Methodology	11
4. Hydrology	13
5. Inlet Calculations	14
6. Existing Storm Drain	14
7. Direct Discharge to San Diego River	16
8. Conclusion	17

EXHIBITS

- A. Hydrology Calculations (AES)B. Public Storm Drain HGL (WSPGW)
- C. FIRM Panel 06073C1634G
- D. Aerial Photo of the property
- E. BSI Report Excerpts
- F. Site Plan and off-Site Improvements Exhibit

APPENDIX

Existing Drainage Exhibit	Map Pocket #1
Proposed Drainage/Node Exhibits (West/PA-1)	Map Pocket #2
Proposed Drainage/Node Exhibits (North/PA-2)	Map Pocket #3
Proposed Drainage/Node Exhibits (Hotel/PA-3)	Map Pocket #4
Proposed Drainage/Node Exhibits (Access Road)	Map Pocket #5
Proposed Drainage/Node Exhibits (Access Road)	Map Pocket #6
References	Map Pocket #7

1.0 Introduction

1.1 Purpose

The purpose of the study is to document existing and proposed drainage conditions, provide peak flow estimates for the drainage facilities in proposed conditions, evaluate potential drainage impacts resulting from the proposed project, and provide recommended design measures to alleviate or reduce impacts.

1.2 Existing Conditions

The existing Carlton Oaks Country Club and Resort is located in the City of Santee and City of San Diego, northwest of the State Route 52 / 125 interchange. The project site is bounded by the San Diego River and Forester Creek to the south and east, West Hills Parkway to the west, and Carlton Oaks Drive to the north. Most of the project limits are located within FEMA regulatory limits of San Diego River (Special Flood Hazard Area Zone AE as shown on FIRM Panel 06073C1634G, dated May 16, 2012, located in Exhibit "C"). The majority of the proposed Residential West (PA-1) is located with the existing floodplain, a small portion of the southwest corner of the proposed Residential North (PA-2) is also located in the existing floodplain, and the proposed Resort Area (PA-3) is located within the existing floodplain and floodway. The project receives runoff from the San Diego River, Sycamore (Santee Lakes) channel, plus several storm drain outfalls from the existing neighborhoods along the Carlton Oaks and Mast Blvd corridors. Runoff from Forester Creek enters at the southeasterly limits of the property. See Exhibit "D" for an Aerial Photo of the property.

South Channel: The property includes a vegetated earth berm along the southern and eastern limits, which directs "low flows" from the San Diego River and Forester Creek along the southerly golf course limits. The berm consists of loosely placed soil that was graded per 1995 grading plan G-378, and it is relatively small (compared to the overall river width). The berm ends near the western limits of the golf course, just upstream of West Hills Parkway Bridge (West Hills Parkway crosses over San Diego River southwest of the proposed Residential West PA-1). See Exhibit "A" for an Aerial Photo of the property showing the existing West Hills Parkway Bridge location. The existing channel is vegetated with sensitive habitat.

North Channel: Runoff from Sycamore channel (adjacent to the western limits of the Santee Lakes) enters the site near the northeast end of the golf course under the Carlton Oaks Drive bridge. Flows are directed southerly and westerly through the northern limits of the golf course through a variety of golf course water features including streams, water hazards and manufactured ponds. The north channel provides drainage relief for overland flows from the majority of the golf course, and the existing neighborhoods north of the property.

Flows from the south and north channels confluence at the west end of the earth berm, approximately 500' upstream of West Hills Parkway bridge. According to the existing model, during larger storm events, the flood water levels will overtop the berm at one or more locations. Anecdotally, the berm has stood up to large flooding events in the past and has likely been reinforced by natural vegetation growth along the sides. The project does not require or propose any modifications to the existing berm.

See Existing Drainage Exhibit in Map Pocket #1.

1.3 Project Description

Lennar Homes and Carlton Oaks Golf Course, as joint project proponents, are proposing to redevelop the existing Carlton Oaks Country Club into a resort with residential accessory uses (proposed project). An existing clubhouse, restaurant/bar, pro shop, hotel and hotel cottages, and surface parking lot are currently located on the proposed project site and will be demolished as part of the initial project construction.

The proposed project site that will be developed is located on approximately 164.9 acres and would include the redesign of the existing Carlton Oaks Golf Course and the following components: (1)) redesign of the golf course, (2) reconstruction of the clubhouse and pro shop, practice area, and learning center structure; (3) a hotel and associated cottages; (4) residential accessory uses consisting of two residential neighborhoods (Residential West and Residential North) with open space areas; and (5) related on-site infrastructure. Approximately 3.4 acres consist of areas outside of the project site that will be developed with improvements associated with the Project and are located either in the City of San Diego or Santee (Off-site improvement areas). The off-site improvement areas and the proposed project site (developed and undeveloped) make up the CEQA Study area, totaling approximately168.3 acres. See Exhibit "F" for illustrating the onsite project area and offsite improvements.

Golf Course Redesign:

The proposed project would redesign the existing 145-acre, 18-hole golf course to provide an improved experience for the users of the Carlton Oaks Country Club and Resort. The redesigned golf course would cover approximately 104 acres, and would provide 18 holes, similar to the existing course. The length of the golf course would be reduced from approximately 7,300 yards to 6,450 yards to provide a more engaging golfing experience. Under the current existing conditions, the golf course has a total of approximately 132 acres of turf irrigation with a 30-year-old block type irrigation system. The new course design would only have approximately 66 acres of turf irrigation (a 50 percent decrease) and would utilize a new modem irrigation system with individual head controls.

The proposed golf course would reshape the existing man-made ponds on the golf course, and the existing maintenance facility in the eastern portion of the project site will remain in its current location. The existing drainage patterns and facilities would be updated within the golf course to improve the flow of drainage, which would reduce the amount of ponding that occurs on the site during rain events. The remaining out-of-play areas around the golf course would be planted with native grasses and smaller shrubs native to the region, which would be selected to require little or no maintenance. There are a number of riparian areas within the project site, providing an environment for native birds, small animals, and aquatic plant and animal species. These areas are planned to be avoided and retained in their current condition.

In addition to the golf course, the Carlton Oaks Golf Course owner would develop several golf amenities including a pro shop, cart barn, and a cart waiting area on the eastern end of the golf course, northeast of the golf resort, as well as two practice areas. A golf learning center structure would also be developed northeast of the pro shop. A new shared surface parking lot would provide parking spaces for users of the golf course, clubhouse, and hotel.

Carlton Oaks Country Club and Resort Area (PA-3):

The Carlton Oaks Country Club and Resort would consist of approximately 51,926 square feet of golf related resort amenities including 10 cottage-style hotel units, 42-room hotel, a clubhouse with a restaurant, event space, a golf learning center, a cart barn, a pro shop, and a store all located in the eastern portion of the project site. There would also be a golf cart waiting area and a shared, surface parking lot. The hotel and cottage buildings would be constructed as two-story structures. The clubhouse and resort would also provide an outdoor pool and deck area, a patio, and a courtyard.

Residential Development:

The Carlton Oaks Country Club and Resort would include a residential component in the western and northeastern portions of the project site. Residential West (PA-1), in the western portion of the project site, would consist of 86 multi-family detached residential units. Residential North (PA-2) would be located in the northern portion of the project site and would consist of 150 detached multi-family residential units. In addition, six single-family lots would front Carlton Oaks Drive and allow for single-story homes on a minimum of 6,000 square-foot lots. One existing home located at 9225 Inwood Drive has also been included within the project area to allow for minor driveway modifications but no changes to the structure are proposed. The applicant is requesting approval of required easements from the City of San Diego for grading, landscaping, utilities, access, and maintenance.

Access Points:

Access to Residential West would include a private driveway that would require access easements across two parcels owned by the City of San Diego, these parcels cross both City of San Diego and City of Santee jurisdictions. The proposed easements would allow private and emergency access onto the proposed subdivision.

Residential North and the resort would be accessed from Carlton Oaks Drive at the intersection of Burning Tree Way. This access would be approximately 200 feet west of the existing hotel access road (Inwood Drive). Inwood Drive would be closed and replaced with curb and sidewalk. Additionally, six existing driveway aprons along the project frontage would be closed and replaced with curb and landscaping.

Access to the golf course and resort would be provided by a private drive through Residential North from Carlton Oaks Drive southerly via a new bridge across the San Diego River (North Channel).

Also, a 26-foot-wide private emergency access road for the Residential North and resort parcels would be provided through the existing Vista del Verde condominiums located in the northeastern corner of the project site. This emergency access would comply with the requirements of the City of Santee's Fire Code and would be for the proposed project only and would not be open to the public. A new fence with an emergency access gate will be erected between buildings of the existing adjacent condominium complexes. A private emergency access roadway will also be provided to Residential West "PA-1" via an extension of Private Drive "C" westerly to West Hills Parkway. The

emergency vehicle access will be 26 feet wide with curb and gutter and AC pavement and base, with grades and horizontal alignment that meet the City's Fire Code.

The project will also include a 26-foot private utility maintenance roadway between Residential West "PA-1" and Residential North "PA-2", which will also serve as a pedestrian/golfcart passageway from PA-1 to the resort. The private roadway/pathway will be paved with 26 feet of AC pavement and base with a 2-foot shoulder and will meet the City Fire Code roadway grades and horizontal alignment requirements for firefighting apparatus and vehicles. Gates are located at the west and east limits of the roadway

Project Trail Segments:

A multipurpose, public trail will be provided on the property on the north side of the San Diego River, linking with existing and planned trails to the east and west of the site (Project Trail Segment).

A portion of the Project Trail Segment on the eastern side of the project site will be provided beginning at the entrance of Residential North at Carlton Oaks Drive traversing through the resort and along the southeastern border of the project ending slightly west of the jurisdictional line between the City of Santee and the City of San Diego. This portion of the trail will link to the existing Mast Park West Trail, as well as the future planned trail known as the Carlton Oaks Golf Course Segment.

A portion of the Project Trail Segment on the western side of the project site will be constructed beginning at the Santee jurisdictional line ending at the property line (Station 38+60). This portion of the trail will link to the future planned trail known as the Carlton Oaks Golf Course Segment.

Along the Residential West boundary, a graded bench (located within the Carlton Oaks Golf Course Segment) would also be provided within the easement areas that will be granted to the applicant by the City of San Diego as a part of this project.

In addition to the proposed trail alignment currently proposed through Residential North and the County Club and Resort Area, a supplemental trail offer of dedication is shown on the applicant's map should the City request this supplemental trail alignment. The supplemental trail offer of dedication starts from an area east of the Country Club and Resort parking lot to the property line of the Vista del Verde community. If the City of Santee were to request this supplemental segment, the applicant will agree to dedicate the trail alignment and construct this trail at a later date if the City determines that it desires to build this trail in the future.

Grading:

Fill will be placed to raise the Residential West (PA-1) and Residential North (PA-2) out of the floodplain, and the Resort Area (PA-3) above the 100-year flood levels of the floodway. Grades in a portion of the existing golf course, located approximately south of the proposed Resort Area, will be lowered to offset for the fill that is being placed in the residential and resort areas. Residential West (PA-1) is a residential development located at the west end of the existing golf course property, located north of the record

floodway. Residential West (PA-1) and Residential North area (PA-2) do not encroach into the Floodway but are located in the existing floodplain. (Both PA-1 and PA-2 make up the Residential Area.)

The golf course will be regraded to enhance flows around the proposed Residential and Resort development areas. The Resort Area (PA-3) will encroach into the existing floodway. The Floodway and Floodplain is proposed to be remapped to reflect that Residential West and North are removed from the floodplain and and the Resort Area is fully removed from both the floodplain and floodway. Both residential areas will continue to remain out of the floodway consistent with the current FEMA mapping.

Offsite Improvements:

The following offsite improvements would be required as part of the implementation of the proposed project.

- 1. Emergency Vehicle Access: The project will include the construction of a 26-foot-wide emergency vehicle access roadway, pursuant to the City of Santee Fire Department's requirements. This work would include modifications to existing parking, as well as construction work at an offsite location within the Vista del Verde community in order to construct the emergency vehicle access pathway. The emergency vehicle access roadway will run south from the condominium project onto the golf course property to the developed portion of the resort area. One parking spot that may be lost by such work will also be relocated on the Vista del Verde property subject to the approval of the City of Santee. The project also includes installation of a motorized gate and replacement of the existing chain link fence with a steel tubular fence, on the boundary of the Golf Course property.
- 2. West Hills Parkway: West Hills Parkway will be widened within the existing right-of-way from Carlton Oaks Drive approximately 700 feet southerly to the existing bridge, in order to provide a dedicated left-turn lane into the project driveway. The roadway will be widened within the existing right-of-way, and therefore, no additional dedication is required. New striping will include a striped median and increased width for bike lanes. Improvements will also include a new driveway entry for the proposed residential development. Trees are proposed on both sides of West Hills Parkway to provide source control of stormwater, limit stormwater transport and pollutant conveyance to the collection system, restore pre-development hydrology to the extent possible, and provide environmentally enhanced roads. Green Street PDP Exempt SWQMP for Carlton Oaks has been prepared per City of San Diego Storm Water Standards\ BMP Design Manual and following the guidance in Appendix J of the Manual. This work falls within the boundaries of City of San Diego and follows their standards. Access into the project has been analyzed for sight-distance, signal warrants and traffic movements by the project engineering team.

- 3. Extension of a Padre Dam Municipal Water District (PDMWD) Public Water Main: A Padre Dam Municipal Water District public water main will be extended from the end of Carlton Oaks Drive and down West Hills Parkway and into the proposed subdivision to provide a connection to the private water system for Residential West.
- 4. Access to Residential North and the Resort Area: Residential North and the Resort Area will take access from Carlton Oaks Drive at the intersection of Burning Tree Way. This access point is approximately 200 feet east of the existing hotel access road (Inwood Drive). Inwood Drive will be closed and replaced with curb and sidewalk. Additionally, six existing driveway aprons along the project frontage, will be closed and replaced with curb and landscaping along with other miscellaneous frontage improvements such as overhead power undergrounding and landscaping. Overhead power undergrounding would extend north of Carlton Oaks Drive. Potable and recycled water will be connected to existing main lines in Carlton Oaks Drive and extended into the project.
- 5. <u>Drainage Improvements</u>: Existing drainage pipes discharge to the golf course at five locations along the north subdivision boundary. All improvements shall be done in a way that will maintain the existing flow and drainage patterns. Each location is described as follows:
 - A. Existing 42-inch storm drain discharges to the site from a headwall located approximately 15 feet offsite, located within a public easement (City of Santee) on an existing residential lot (Lot 17 of Map 4402). The offsite flows will be picked up onsite by proposed storm drain improvements and discharged into the San Diego River (North Channel).
 - B. Existing 27-inch storm drain extends onto the project site from an existing residential lot (Lot 14 of Map 5417): This pipe will be extended under the proposed access road to a new headwall and discharge onto the golf course.
 - C. Existing 18-inch storm drain discharges to the site from a headwall located approximately 15 feet offsite, located within a public easement (City of Santee) on an existing residential lot (Lot 230 of Map 6973): The offsite flows will be picked up onsite by proposed storm drain improvements and discharged onto the golf course.
 - D. Existing 47"x71" storm drain discharges to the site from a headwall located approximately 20 feet offsite, located within a public easement (City of Santee) on an existing residential lot (Lot 239 of Map 6973). Project proposes to remove the headwall and extend the pipe into the project.

- E. An existing 72-inch diameter storm drainpipe discharges to the site from the headwall located approximately immediately offsite at the north property line of Residential West. The existing headwall includes a large concrete energy dissipator and concrete channel. These storm drain facilities are located offsite on existing residential lots (Lots 679 & 680 of Map 7295) and within an existing public easement (City of Santee). The offsite flows will be picked up onsite by proposed storm drain improvements and discharged onto the golf course. The project drainage study includes a hydraulic analysis of the extension of this pipe to ensure that no negative upstream impacts will occur as a result of this project.
- 6. Sewer Maintenance Hole Improvements: Three existing sewer maintenance holes located offsite within a public easement (Padre Dam Municipal Water District) in the northeast corner of the project within the Vista del Verde condominiums: Engineered sewer manhole liners may be needed in the three manholes between the 8-inch tie-in from the north and the 24-inch tie-in. The need for these liners will be determined in the project design phase. All work will be limited to within the public easement area.

2.0 Flood Risk

2.1 FEMA Flood Mapping

The residential areas and Resort Area are proposed to be located in the City of Santee. In addition, a portion of the golf course, the southwest corner of the Resort Area (PA-3), and the primary access to Residential West are proposed to be located in the City of San Diego. The proposed Residential areas are partially located within the existing FEMA floodplain; and the proposed Resort Area (PA-3) is located within the existing FEMA floodplain and floodway of the San Diego River (Special Flood Hazard Area Zone AE as shown on FIRM Panel 06073C1634G, dated May 16, 2012 located in Exhibit "C"). The existing hotel is located outside of the existing floodplain and floodway and can be seen at cross section AY290. The initial FIRM Panel was prepared using the original flood model for San Diego River (Upper) in 1982. The existing development north of Forester Creek and south of Carlton Oaks golf course was mapped as Zone X as shown on FIRM Panels: 06073C1634G, and modeled as an ineffective area in the original effective model.

A separate Flood Study for Carlton Oaks has been prepared by H&A and dated February 2024. The Flood Study provides documentation of the data collection, methodologies, and results related to San Diego River hydraulic analysis in existing and proposed conditions that will be used as the basis for preparing the project CLOMR and for processing through the City and ultimately FEMA. The report documents consistency with City of Santee, City of San Diego and FEMA Flood ordinance and regulations, and utilizes the proposed condition model combined with the City specific 100-year flow rate to determine project BFEs, which buildings shall be appropriately elevated above.

The Carlton Oaks golf course is located within the limits of the San Diego River. The San Diego River watershed is several thousand acres and includes both urban, rural, and natural land uses. The majority of flows are carried by the San Diego River (Upper) and Forester Creek. The property includes a vegetated earth berm along the southern and eastern limits, which directs "low flows" from the San Diego River and Forester Creek along the southerly golf course limits. The berm consists of loosely placed soil that was graded per 1995 grading plan G-378, and it is relatively small (compared to the overall river width). Therefore, HEC-RAS proposed, and existing models assume no berm condition to be conservative. The berm ends near the western limits of the golf course. just upstream of West Hills Parkway Bridge (West Hills Parkway crosses over San Diego River southwest of the proposed Residential West PA-1). As will be discussed in the conclusion, there would be a substantial lag time between the time the peak flows from the proposed development outlet to the San Diego River and time the peak flows along the San Diego River reach the proposed outlet locations since the tributary area to the San Diego River is several thousand acres. Due to this lag time, there is no net increase of flows to the San Diego River from the development of Carlton Oaks Country Club and Resort when compared to existing conditions. Therefore, no detention facilities are proposed, and no changes or impacts are proposed or needed to the existing berm. The project also receives runoff from Sycamore (Santee Lakes) channel, plus several storm drain outfalls from the existing neighborhoods along the Carlton Oaks and Mast Blvd corridors. Runoff from Forester Creek joins the San Diego River along the southeasterly limits of the property.

The grading for the Residential West and North development areas are primarily within the floodplain limits, which is typically permitted since the resulting impacts are negligible. The grading for the Hotel/Resort and the Golf Course will occur within the regulatory floodway, which is more sensitive to impacts. A comprehensive Flood Study has been prepared along with this drainage study. The Flood Study demonstrates that the project meets the requirements set forth in the City of Santee Flood Ordinance.

FEMA will require a Conditional Letter of Map Revision (CLOMR) to be submitted with relevant mapping, calculations, forms and models. To ensure that the proposed project meets all of the design criteria for FEMA and City, all reports and plans will be submitted to all agencies for review. The City reviews all of the reports in-house and through independent consultants, and signs the MT-2 forms. Upon approval by all agencies, FEMA will issue a CLOMR, which allows the City to issue the grading permit so the project can proceed as shown on the preliminary drawings and models.

Upon completion of the project grading, FEMA requires that a certified survey be performed to verify that the limits and elevation of the grading are in conformance with the approved CLOMR. Upon certification of the grading, the last step is to submit a LOMR (Letter of Map Revision) to FEMA. The LOMR will officially revise the current NFIP map to show changes to the floodplain, floodway, and flood elevations. The revised maps and river modeling will be held at FEMA and at the City as an official record.

2.2 City of Santee/BSI Flood Mapping

In 1992, BSI conducted a Citywide Drainage Study was prepared to evaluate the existing storm drain systems and the flood elevations for the San Diego River (B I, 1992). This study forecasted that there would be increases in impervious area due to future development, and construction of related street improvements and drainage facilities will result in greater peak flow rates (approximately 30% larger) resulting in increased flood elevations ranging from 1' to 6' higher when compared to the FEMA elevations. The BSI study was not adopted by FEMA, but the City has required all proposed development to use the larger flood values when determining the minimum finished floors of structures

The projected peak flow rates as published by FEMA and the City of Santee /BSI study are as follows:

Table 1 - Comparison of Peak Flow Rates (cfs)											
	10-Year	50-Year	100-	100-Year	500-						
San Diego River Location	FEMA	FEMA	Year	City / BSI	Year						
			FEMA	-	FEMA						
W Hills Br (Mission Dam)	5,500	19,000	38,000	50,000	112,000						
0.7 Mi Downstream of Sycamore	5,000	17,000	37,000	49,000	112,000						
Creek											
Forester Creek Confluence	4,500	16,000	36,000	48,000	112,000						

Flood modeling of the San Diego River (BSI July 1992) is shown on the City of Santee Drawing series # 92-165. See Map Pocket #4 of Flood Study for Carlton Oaks. Sheet 2 and 3 of the drawing series shows flood elevations for the "Santee Discharge Rates" shown along the project range from about 321.0 0 at the east end of the project to 310.2 at the west end of the project. This map shows the baseline flood elevations at each cross section being analyzed within this report. These elevations are used as a base flood elevations, which buildings were appropriately elevated above to meet City of Santee Ordinance.

The City Flood Damage Prevention Ordinance (Santee Municipal Code, Chapter 11.36) requires that for new construction, the lowest finished floor is elevated one foot above the base flood elevation provided in the San Diego River Flood Study. The proposed project has been designed so the lowest finished floor elevation is a minimum of 1 'above the base flood elevation and thus will meet this requirement in compliance with the City's ordinance. Due to the magnitude of the tributary areas and resulting peak flows, development does not affect the FEMA or City/BSI flood values.

Please refer to the separate Flood Study titled "Flood Study (CLOMR) for Carlton Oaks" dated May 2025, for more information regarding Flood Risk. A CLOMR will be submitted as part of the Discretionary process.

3.0. Methodology

Modified Rational Method Hydrologic Analysis

Computer Software Package – AES-2015

Design Storm - 100- year return interval

Land Use – Single-family Residential, Commercial

Soil Type – The project contains soil type A, B, and D, however, hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. To be more conservative, Soil D was assumed for the entire studied area.

Runoff Coefficient - In accordance with the County of San Diego standards, runoff coefficients were based on land use and slope per San Diego County Hydrology Manual. A 0.9 runoff was assigned for impervious areas while a 0.2, 0.25, and 0.35 coefficient was used for pervious areas with soil type A, B, and D respectively. Please see the AES spreadsheet for assumed imperviousness of each area. Soil D was assumed for the entire studied area.

Rainfall Intensity- The rainfall intensity is determined per the San Diego County Hydrology Manual based on 6-hour precipitation amounts and calculated time of concentrations. Sixhour precipitations are taken from the San Diego County Hydrology Manual isopluvials.

Method of Analysis – The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 1.0 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation:

- Q = CIA, where:
- Q = The peak runoff rate in cubic feet per second at the point of analysis.
- C = A runoff coefficient representing the area averaged ratio of runoff to rainfall intensity.

I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration.

A = The drainage basin area in acres.

To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes.

The procedure for the subarea summation model is as follows:

- (1) Subdivide the watershed into subareas with the initial subarea being less than 10 acres in size (generally 1 lot will do), and subsequent subareas gradually increasing in size. Assign upstream and downstream nodal numbers to each subarea to correlate calculations to the watershed map.
- (2) Estimate an initial T_c by using the appropriate nomograph or overland flow velocity estimation.
- (3) Using the initial T_c , determine the corresponding values of I. Then Q = CIA.
- (4) Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration)

The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2003 computer subarea menu is as follows:

SUBAREA HYDROLOGIC PROCESS

- 1. Confluence analysis at node.
- 2. Initial subarea analysis (including time of concentration calculation).
- 3. Pipeflow travel time (computer estimated).
- 4. Pipeflow travel time (user specified).
- 5. Trapezoidal channel travel time.
- 6. Street flow analysis through subarea.
- 7. User specified information at node.
- 8. Addition of subarea runoff to main line.
- 9. V-gutter flow through area.
- 10. Copy main stream data to memory bank
- 11. Confluence main stream data with a memory bank
- 12. Clear a memory bank

At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape.

(1). If the collection streams have the same times of concentration, then the Q values are directly summed,

$$Q_p = Q_a + Q_b; T_p = T_a = T_b$$

- (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows:
 - (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities.

$$Q_p = Q_a + Q_b (I_a/I_b); T_p = T_a$$

(ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values.

$$Q_p = Q_b + Q_a (T_b/T_a); T_p = T_b$$

Underground storm drains are analyzed in a similar way. Flow data obtained from the surface model for inlets and collection points are input into the nodes representing those structures. Design grades and lengths are used to compute the capacity of the storm drains and to model the downstream travel times.

4.0. Hydrology

The proposed project site will include multiple private storm drain systems which discharge to the proprietary biofiltration BMPs and then will connect to the extensions of the existing public bypass storm drain systems or will outfall into the San Diego River. 100-year rainfall intensities have been used in the hydrologic analysis to size the proposed storm drain systems, and check the capacity of the existing storm drain systems.

A rational method analysis (AES 2015) was prepared for the project existing and proposed conditions. The above calculations are provided in Exhibit "A."

The BSI San Diego River Flood Study was prepared using Discharge rates from the Preliminary City of Santee Procedure for Design of Storm Drains Outletting into The San Diego River prepared by City of Santee Public Work Department and dated March 22, 1991 (see Exhibit E of this report). Per this procedure and study, the calculated time for the peak flows along the San Diego River to reach the project outlet locations is 77 minutes, while the calculated time of concentration for the peak flows at the proposed Carlton Oaks Country Club and Resort outlet locations doesn't exceed 27 minutes. There would be a substantial lag time between the time the peak flows from the proposed development outlet to the San Diego River and the time the peak flows along the San Diego River reach the proposed outlet locations since the tributary area to the San Diego River is several thousand acres.

Due to this lag time, there is no net increase of flows to the San Diego River from the development of Carlton Oaks Country Club and Resort when compared to existing conditions. Therefore, no detention facilities have been proposed.

5.0. Inlet Calculations

The project includes a variety of inlet types including San Diego Regional Standard Drawing curb inlets (Type "A" and Type "B"). For final design, peak flow rates (Q100) used for curb inlet sizing will be sized based on the peak flow calculated for each inlet tributary area.

6.0. Existing Storm Drain

This project includes two public storm drain extensions that bypass through the proposed residential development (72" RCP and 47"X71" CMP), and three that will be discharged through the course.

Discharge from an existing 72-inch storm drain, currently discharging onto the golf course north of the Residential West (PA-1) and into a man-made pond, will be conveyed through the site in a bypass storm drain, and discharge directly to the San Diego River at the same location as in existing conditions. A rock riprap energy dissipater is proposed at the storm drain outlet to reduce storm runoff to non-erosive velocity and prevent erosion and siltation. The capacity of the extended storm drain has been checked using the peak flows from the proposed conditions (see Exhibit B for Hydraulic analysis) to confirm that the increased rate or amount of surface runoff, will not exceed the capacity of existing stormwater drainage systems. Additionally, the extension of the existing storm drain will not impede or redirect flood flows. As a result, no substantial alteration is proposed to the existing drainage pattern. This bypass storm drain is referred to as Line 1 in Map Pocket number 2, as shown on Map 2 of 6 of the Proposed Conditions Hydrology Map.

To ensure accuracy in establishing the hydraulic grade line for the proposed extension of the 72-inch storm drain, a hydraulic analysis was conducted which took into account the tailwater condition at the discharge point within the river, specifically between cross sections 250 and 260. The tributary area to the proposed extension is 332.5 acres (please refer to the tributary area to Node 20 in the AES analysis for the proposed conditions in Exhibit A), while the area of the main stem (San Diego River) at the discharge location is 367.5 square miles (please refer to the stream stats report for San Diego River in Exhibit A). This means that the area ratio of the drainage area of the main stem to the area of the tributary is approximately 999 to 1.4.

According to Section 3.3.5 of the San Diego County Hydraulic Manual Table 3.4, for the 100-year design storm occurring over both areas, the flow rate in the main stem will equal that of a 25-year storm when the tributary flow rate reaches its 100-year peak. Conversely, when the flow rate in the main stem reaches its 100-year peak at the outfall of the tributary, the flow rate from the tributary will have fallen to the 25-year flow rate. It should be noted that a conservative approach was taken and the 50-year water surface elevation in the river was used between cross sections 250 and 260 instead of the 25-year water surface elevation, as the 25-year peak flow for the river was not calculated.

The second existing public storm drain that currently discharges onto the golf course north-west corner of Residential North (PA-2) will require a bypass system. Discharge from this existing 47 x 71-inch storm drain to the north-west of Residential North will be conveyed through a separate public bypass storm drain that runs parallel to Residential

North and will discharge directly to the San Diego River. A rock riprap energy dissipater is proposed at the storm drain outlet to reduce storm runoff to non-erosive velocity. This bypass storm drain is referred to as Line 2 in Map Pocket number 2, as shown on Map 5 of 6 of the Proposed Conditions Hydrology Map.

To establish the hydraulic grade line for the proposed bypass system, a conservative approach was adopted. This involved using the 100-year water surface elevation in the river as tailwater and considering the 100-year peak flow from the tributary area to the studied pipe.

An existing 42-inch storm drain currently discharges from a headwall located approximately 15 feet offsite, northwest of the Residential East (PA-2). The offsite flows will be picked up onsite by proposed storm drain improvements and conveyed through the site in a bypass storm drain and discharge directly to the San Diego River as in existing conditions. A rock riprap energy dissipater is proposed at the storm drain outlet to reduce storm runoff to non-erosive velocity and prevent erosion and siltation. This bypass storm drain is referred to as Line 5 in Map Pocket number 2, as shown on Maps 3 and 6 of the Proposed Conditions Hydrology Map.

To ensure accuracy in establishing the hydraulic grade line for the proposed bypass storm drain, a hydraulic analysis was conducted which considered the tailwater condition at the discharge point within the river between cross sections 280 and 285. The tributary area to the proposed bypass storm drain is 72.0 acres (please refer to the tributary area to Node 218 in the AES analysis for the proposed conditions in Exhibit A), while the area of the main stem (San Diego River) at the discharge location is 339.4 square miles (please refer to the stream stats report for San Diego River in Exhibit A). This means that the area ratio of the drainage area of the main stem to the area of the tributary is approximately 9,999 to 3.31.

According to Section 3.3.5 of the San Diego County Hydraulic Manual Table 3.4, for the 100-year design storm occurring over both areas, the flow rate in the main stem will equal that of a 10-year storm when the tributary flow rate reaches its 100-year peak. Conversely, when the flow rate in the main stem reaches its 100-year peak at the outfall of the tributary, the flow rate from the tributary will have fallen to the 10-year flow rate.

The existing storm drain that discharges into the golf course includes an existing 18" public storm drain that discharges to the site from a headwall located approximately 15 feet offsite. The offsite flows will be picked up onsite by proposed storm drain improvements and discharged onto the golf course. A rock riprap energy dissipater is proposed at the storm drain outlet to reduce storm runoff to non-erosive velocity. This storm drain is referred to as Line 3 in Map Pocket number 2, as shown on Map 6 of 6 of the Proposed Conditions Hydrology Map.

In addition, an existing 27-inch storm drain discharges to the site from a headwall on site located approximately 33 feet from the northern boundary, within a public easement (City of Santee) on an existing residential lot (Lot 14 of Map 5417). The project proposes to remove the headwall and extend the pipe approximately 10 ft into the project site. The discharge conditions will be similar to existing conditions, about 137 ft north of the river.

A rock riprap energy dissipater is proposed at the storm drain outlet to reduce storm runoff to non-erosive velocity. This storm drain is referred to as Line 4 in Map Pocket number 2, as shown on Map 6 of 6 of the Proposed Conditions Hydrology Map.

To establish the hydraulic grade line for the proposed line 3 and line 4, the conservative approach of using the 100-year water surface elevation in the river as the tailwater and considering the 100-year peak flow from the tributary area to the studied pipe was utilized.

See Map Pocket #1 for the Existing Drainage exhibit, and Map Pocket #2 for the Proposed Drainage exhibit.

The discharge locations may be minimally impacted by backwater effects associated with the San Diego River. We have assumed that these potential effects will occur and have included them in our calculations for the public storm drain systems which are included in Exhibit "B". The discharge locations may be minimally impacted by backwater effects associated with the San Diego River. We have assumed that these potential effects will occur and have included them in our calculations for the public storm drain systems which are included in Exhibit "B". For tailwater calculations, the San Diego River proposed conditions HEC-RAS model was used with BSI- 100 Year peak flow, FEMA 50-Year peak flow and FEMA 10-Year Peak flow. Please refer to Exhibit B for HEC-RAS results.

7.0. Direct Discharge to San Diego River

Drainage systems discharging to rivers and water bodies need to consider the outlet controls imposed by depth and velocity of the receiving water (The project discharges at the Santee portion of San Diego River). The City of Santee, Public Works Department "Procedure for Design of Storm Drains Outletting in the San Diego River" (1991), requires that "side channels" (areas where flows can meander out of the designated floodway due and converge wide other drainage features - such as Sycamore Creek) be designed for the worst case under two different scenarios. The first scenario assumes that side flow channels are to be designed using the 100-year peak storm (County of San Diego 6~hr rational method), while also considering the 10-year peak flow rate and velocity in the San Diego River +2'. For the second scenario, hydrology calculations for the side channel flows are adjusted (reduced) to reflect the San Diego River time of concentration, which is 77 minutes (I100=1.11 in/hr.) in the vicinity of West Hills Drive. The San Diego River hydraulic grade line is based upon the 100-year 6-hour storm event. The overflow structures for the water quality proprietary biofiltration system will be connected to a storm drain pipes that will discharge to the San Diego River within the City of Santee boundary. The 100-year water surface elevation (BSI Study) at these locations is estimated to be approximately 309 at PA~1, 318 at PA-2, and 320 at PA-3. The relevant discharge rates are shown on the Proposed Drainage exhibits.

See Exhibit "C" for summary of adjusted flows.

8.0 Conclusion

The proposed storm drain systems are designed to intercept and convey the 100-year peak flows for the project. Due to the magnitude of the tributary areas and resulting peak flows, the proposed development does not affect the FEMA or City/BSI flood values.

The Carlton Oaks Country Club and Resort project is located within the floodplain and floodway of the San Diego River (06073 C 1634G). Fill will be placed to raise the development areas above the 100-year flood levels. A CLOMR will processed should be prepared as part of the discretionary approval process. Please refer to The Flood Study (CLOMR) for Carlton Oaks Country Club and Resort prepared by Hunsaker and Associates and dated May 2025.

Due to the substantial lag time between the time the peak flows from the proposed development outlet to the San Diego River, and time the peak flows along the San Diego River reach the proposed outlet locations; there is no net increase of flows to the San Diego River from the development of Carlton Oaks Country Club and Resort when compared to existing conditions. Therefore, no detention facilities have been proposed.

The project Flood Study and Drainage Study provides verification for all of the following conditions required per CEQA (as shown in italics) I

- a) Violate any water quality standards or waste discharge requirements, or otherwise substantially degrade surface water quality? The project addresses all water quality requirements. Proprietary biofiltration system has been proposed to address water quality requirement, in addition to the proposed site design and source control BMPs. A separate Report "PDP SWQMP for Carlton Oaks" prepared by H&A and dated May 2025, has been prepared to address all water quality requirements.
- b) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or through the addition of impervious surfaces, in a manner which would:
- i. result in substantial erosion or siltation on- or off-site;
- ii. substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site;
- iii. Create or contribute runoff water, which would exceed the capacity of existing or

planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or

iv. Impede or redirect flood flows

The project does not substantially alter the existing drainage patterns of the site or area, including through the alteration of the course of a stream or river in a manner that would result in substantial erosion or siltation. The project will maintain the existing drainage patterns, which directly discharge to the San Diego River; however, it proposes to alter the floodplain and floodway limits as part of the Golf Course and Country Club redevelopment as part of a CLOMR/LOMR application. Discharge locations will be controlled and equipped with energy dissipation devices. In addition, the project will implement measures to prevent potential scour and erosion to the proposed slopes adjacent to the floodway and floodplain by utilizing the latest proprietary technology in slope surface stabilization and reinforcement, such as geotextile turf reinforcement mats that bind to the soil. Therefore, the alterations will not result in substantial erosion or siltation either on- or off-site.

The project will not increase the rate or amount of surface runoff substantially.

The project's runoff water will not exceed the capacity of the existing storm drain system. Calculations were provided to confirm that the public storm drain system has enough capacity to convey the additional flow from the site. Runoff will be treated as previously mentioned prior to discharge into the public storm drain.

The project will not impede or redirect flood flows. The separate flood study prepared for the project addresses all flooding sources.

- c) In a flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation? The project is not in tsunami or seiche zones. Developing in the floodplain and floodway has been addressed in the Flood Study for Carlton Oaks prepared by Hunsaker and Associates and dated May 2025.
- d) Conflict with or obstruct implementation of a water quality control plan?

The project proposes proprietary biofiltration BMPs, in addition to the source control and site design BMPs to comply the Water Quality Control Plan for the San Diego Basin dated September 8, 1994 with amendment effective September 1, 2021; MS4 permit Order No. R9-2013-0001, as amended by R9-2015-0001 R9-2015-0100; City Order Nos. and of Santee Standards, and BMP Design Manual dated February 2016; and City of San Diego BMP Design manual dated 2021. The Storm Water Quality Management Plan for Carlton Oaks Country Club & Resort project will address all the storm water quality requirements for San Diego River and ensure that the proposed project does not conflict or obstruct implementation of Water Quality Control Plan for the San Diego Basin dated September 8, 1994 with amendment effective September 1, 2021.

For more water quality discussion and calculations, please refer to the City of Santee PDP Storm Water Quality Management Plan for Carlton Oaks Country Club & Resort dated May 2025, and City of San Diego Green Street Strom Water Quality Management Plan for Carlton Oaks Country Club & Resort dated April 2023 prepared by Hunsaker & Associates San Diego Inc.

Table - 1

		Summary of	of Existing Co	nditions	
Node	Area (ac.)	Q100 (cfs)	T _c (min.)	l (in/hr)	Runoff Coeff.
263	2.21	5.71	15.88	3.06	0.63
303	3.49	6.59	11.13	3.85	0.49
317	4.92	8.65	12.43	3.59	0.49
264	11.32	20.06	12.28	3.62	0.49
143	68.78	96.57	23.10	2.41	0.58
132	29.85	72.56	10.17	4.08	0.56
127	4.73	10.86	10.50	4.00	0.58
112	55.87	80.68	21.61	2.51	0.58
103	1.92	2.31	33.11	1.90	0.63
20	334.94	405.36	26.61	2.20	0.55
40	5.08	7.68	9.42	4.29	0.35
Project's Outfall	523.11	612.97	27.80	2.13	0.55

Table - 2

		Summary of	Proposed Co	onditions	
Node	Area (ac.)	Q100 (cfs)	T _c (min.)	l (in/hr)	Runoff Coeff.
264	10.54	35.34	7.31	5.05	0.73
303	1.69	8.49	11.20	6.13	0.82
313	2.74	13.59	6.01	6.05	0.82
317	2.76	9.16	9.14	4.37	0.76
322	1.28	3.05	7.74	4.87	0.49
218	72.26	103.58	22.60	2.43	0.59
133	29.87	80.19	10.01	4.12	0.73
128	5.11	13.86	10.39	4.02	0.67
112	55.11	80.19	21.61	2.51	0.58
105	2.81	7.21	8.59	4.55	0.58
20	332.54	412.69	26.67	2.20	0.57
40	5.94	16.94	10.781	3.93	0.71
44	0.46	1.54	6.79	5.30	0.65
Project's Outfall	523.11	655.91	34.24	1.87	0.67

Table - 3

	Summary	of Propose	d Conditions	s VS. Existin	g Conditions	
Node	Area EX	Area PR	Q100-EX	Q100-PR	Area	Runoff
(EX/PR)	(ac.)	(ac.)	(cfs)	(cfs)	Difference	Difference
263 / 264	2.21	10.54	5.71	35.34	+8.33	+29.63
303 / 303	3.49	1.69	6.59	8.49	-1.80	+1.90
NA / 313	ı	2.74	-	13.59	+2.74	+13.59
NA/ 317	ı	2.76	-	9.16	+2.81	+9.16
317 / 322	4.92	1.28	8.65	3.05	-3.64	-5.60
264 / NA	11.32	-	20.06	-	-11.32	-20.06
143 / 218	68.78	72.26	96.57	103.58	+3.48	+7.01
132 / 133	29.85	29.87	72.56	80.19	+0.02	+7.63
127 / 128	4.73	5.11	10.86	13.86	+0.38	+3.00
112 / 112	55.87	55.11	80.68	80.19	-0.76	-0.49
103 / 105	1.92	2.81	2.31	7.21	+0.89	+4.90
20 / 20	334.94	332.54	405.36	412.69	-2.40	+7.33
40 / 40	5.08	5.94	7.68	16.94	+0.86	+9.26
NA / 44	-	0.46	-	1.54	+0.46	+1.54
Project's Outfall	523.11	523.11	612.97	655.91	0	+42.94*

^{*}Please note that while the project's outfall area is the sum of all areas, the project's outfall runoff is NOT the sum of all runoffs. The runoff at the outfall would be the sum of all nodes IF all basins had the same time of concentration. Please see chapter 4 for methodology on runoff calculations at confluence points.

Exhibit A

Hydrology Calculations (AES) 100-Year Runoff Coefficient and Maximum Overland Flow Length Determination San Diego County Hydrology Manual Date: June 2003

Section: Page:

3 6 of 26

Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Lai	nd Use		Runoff Coefficient "C"								
			Soil Type								
NRCS Elements	County Elements	% IMPER.	A	В	С	D					
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35					
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41					
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46					
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49					
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52					
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57					
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60					
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63					
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71					
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79					
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79					
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82					
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85					
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85					
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87					

^{*}The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	12 of 26

Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2

MAXIMUM OVERLAND FLOW LENGTH (L_M)
& INITIAL TIME OF CONCENTRATION (T_i)

a INTIAL TIME OF CONCENTRATION (1)													
Element*	DU/	.5	5%	1	%	2	%	3	<u>%</u>	59	<u>%</u>	10	%
	Acre	L_{M}	T_{i}	L_{M}	T_{i}	L _M	Ti	L_{M}	$T_{\rm i}$	$L_{\mathbf{M}}$	Ti	L_{M}	$T_{\rm i}$
Natural		50	13.2	70	12.5	85	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	85	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	85	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	85	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

^{*}See Table 3-1 for more detailed description

- County of San Diego Design Criteria

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency _____ year

(b)
$$P_6 = 1.75$$
 in., $P_{24} = 2.90$, $P_{6} = 1.75$ in. $P_{24} = 1.75$ in.

(c) Adjusted
$$P_6^{(2)} = 1.75$$
 in.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1	. 1		1	- 1	1	1	1	1	- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency _____ year

(a) Selected frequency _____ year
(b)
$$P_6 = 2.45$$
 in., $P_{24} = 4.55$, $P_{24} = 2.45$ in. $P_{24} = 4.55$ $P_{24} = 4.55$ $P_{24} = 4.55$ $P_{24} = 4.55$

(c) Adjusted
$$P_6^{(2)} = \frac{2.45}{}$$
 in.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1	. 1		1	- 1	1	1	1	1	1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency _____ year

(a) Selected frequency ______ year
(b)
$$P_6 = 1.90$$
 in., $P_{24} = 3.5$, $P_{6} = 1.90$ in. $P_{24} = 3.5$ (c) Adjusted $P_6^{(2)} = 1.90$ in.

(c) Adjusted
$$P_6^{(2)} = \frac{1.90}{1.90}$$
 in.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1	- 1		- 1	- 1	. 1	1	1	- 1	- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.1
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

-AES Hydrology Analysis Existing Conditions

				C	CARLTON O	AKS / 10-YF	3		Hydraulic calculati	ion purpose	es				
							AE	S INPUT DATA	l .						
Noc	de#		Eleva	ation	Length	Longth		Area imperviousness Soi	Soil Type*	C value	If Channel			If memory	
From	To	code	Up	Down	Lengtii	slope	total	impervious	imperviousness	Jon Type	o value	Base (ft)	Z:1	maning	Bank #
1	2	2	825.0	615.0	700	30.0%	10.00	1.83	18%	D	0.45				
2	3	5	615.0	490.0	2000	6.3%						0	2	0.040	
2	3	8					71.00	12.99	18%	D	0.45				
3	4	5	490.0	420.0	1500	4.7%						0	2	0.040	
3	4	8					53.00	9.70	18%	D	0.45				
4	5	5	420.0	374.0	1700	2.7%						0	2	0.040	
4	5	8					43.00	7.87	18%	D	0.45				
5	5	1													1-2
6	7	2	883.0	560.0	1000	32.3%	10.00	1.83	18%	D	0.45				
7	8	5	560.0	430.0	1500	8.7%						0	2	0.040	
7	8	8					40.00	7.32	18%	D	0.45				
8	5	5	430.0	374.0	1500	3.7%						0	2	0.040	
8	5	8					38.00	6.95	18%	D	0.45				
5	5	1													2-2
5	10	3	374.0	369.0	250	2.0%								0.013	
5	10	8					21.12	7.60	36%	D	0.55				
10	15	3	369.0	326.0	1900	2.3%								0.013	
10	15	8					41.62	14.98	36%	D	0.55				
					Tota	l Area	327.74	71.08	This corresponds to the flows draining to node 19 on this study			1			
					-										
26	27	2	502.0	415.0	850	10.2%	10.00	1.83	18%	D	0.45				
27	30	5	415.0	365.0	1350	3.7%						0	2	0.040	
27	30	8					31.97	5.85	18%	D	0.45				
30	35	5	365.0	330.0	1250	2.8%						0	2	0.040	
30	35	8					16.10	5.80	36%	D	0.55				
					Tota	Area	58.07	13.48	This cor	responds to	the flows	draining to	node 216 d	on this stud	у

Nodes, codes, elevations, areas, and runoff coefficients were obtained directly from the report attached in the reference section. Analysis is being performed to obtain th10-yr and 25-yr peak flow to use as input in the preliminary hydraulic calculations.

10-Year Existing Condition Hydrology Model For 216 on this report

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

```
******************** DESCRIPTION OF STUDY ****************
* Carlton Oaks / Hydrology Analysis
10-YEAR RAINFALL EVENT
* EXISTING CONDITIONS TO NODES 19 & 216
 FILE NAME: R: \1759\HYD\DR\CALCS\AES\EX\10EX. DAT
 TIME/DATE OF STUDY: 18:18 04/19/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 _____
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 1.750
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
   (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT)
NO.
   ===
   30. 0 20. 0 0. 018/0. 018/0. 020 0. 67 2. 00 0. 0313 0. 167 0. 0150
 1
   17. 0 10. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   20. 0 12. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
        10. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   16.0
   26. 0 18. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   44. 0 12. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
*********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
_____
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 11.930
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.631
 SUBAREA RUNOFF(CFS) = 11.84
 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE
                       2.00 TO NODE
                                     3.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
```

Page 1

```
ELEVATION DATA: UPSTREAM(FEET) = 615.00 DOWNSTREAM(FEET) = 490.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2000.00 CHANNEL SLOPE = 0.0625
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 11.84

FLOW VELOCITY(FEET/SEC.) = 5.55 FLOW DEPTH(FEET) = 1.03

TRAVEL TIME(MIN.) = 6.01 Tc(MIN.) = 17.94
 LONGEST FLOWPATH FROM NODE
                         1.00 TO NODE
                                        3.00 =
                                                2700.00 FEET.
********************
 FLOW PROCESS FROM NODE
                     2.00 TO NODE 3.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.023
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 71.00 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 81.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.94
*******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 490.00 DOWNSTREAM(FEET) = 420.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0467 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 73.73
 FLOW VELOCITY(FEET/SEC.) = 7.87 FLOW DEPTH(FEET) = 2.16
TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 21.11
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                       4.00 = 4200.00 FEET.
********************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.821
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 53.00 SUBAREA RUNOFF(CFS) = 43.43
 TOTAL AREA(ACRES) = 134.0 TOTAL RUNOFF(CFS) = 109.80
 TC(MIN.) = 21.11
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 420.00 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1700.00 CHANNEL SLOPE = 0.0271
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 109.80
 FLOW VELOCITY(FEET/SEC.) = 7.07 FLOW DEPTH(FEET) = 2.79
 TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) = 25.12
 LONGEST FLOWPATH FROM NODE
                         1.00 TO NODE
                                        5. 00 = 5900. 00 FEET.
***********************
 FLOW PROCESS FROM NODE
                       4.00 TO NODE 5.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.628
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 43.00 SUBAREA RUNOFF(CFS) = 31.50
 TOTAL AREA(ACRES) = 177.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.12
 RAINFALL INTENSITY(INCH/HR) = 1.63
 TOTAL STREAM AREA(ACRES) = 177.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            129.65
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE
                                 7.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 12.460
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.559
 SUBAREA RUNOFF(CFS) = 11.51
TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) =
**********************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 560.00 DOWNSTREAM(FEET) = 430.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0867
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 11.51
 FLOW VELOCITY(FEET/SEC.) = 6.19 FLOW DEPTH(FEET) = 0.96
 TRAVEL TIME(MIN.) = 4.04 Tc(MIN.) = 16.50
 LONGEST FLOWPATH FROM NODE
                       6.00 TO NODE
                                     8.00 = 71500.00 FEET.
******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.135
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 40.00 SUBAREA RUNOFF(CFS) = 38.43
TOTAL AREA(ACRES) = 50.0 TOTAL RUNOFF(CFS) = 48.0
 TC(MIN.) = 16.50
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 5.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 430.00 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0373
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
```

CHANNEL FLOW THRU SUBAREA(CFS) = 48.04

```
TRAVEL TIME(MIN.) = 3.86 Tc(MIN.) = 20.36
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                      5. 00 = 73000. 00 FEET.
**************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 5.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.864
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 38.00 SUBAREA RUNOFF(CFS) =
 TOTAL AREA (ACRES) = 88.0 TOTAL RUNOFF (CFS) =
                                          73. 82
 TC(MIN.) = 20.36
*********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.36
 RAINFALL INTENSITY(INCH/HR) = 1.86
 TOTAL STREAM AREA(ACRES) = 88.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              73.82
 ** CONFLUENCE DATA **
       RUNOFF
                 Tc
 STREAM
                       INTENSITY
                                   AREA
                 (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                                   (ACRE)
         129. 65 25. 12 1. 628
72. 82 20. 36 1. 864
    1
                                    177.00
         73. 82 20. 36
    2
                          1.864
                                    88.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.)
178.88 20.36
 NUMBER
                       (INCH/HOUR)
                       1.864
    1
         194. 11 25. 12
                         1.628
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 194.11 Tc(MIN.) = 25.12
 TOTAL AREA(ACRES) =
                   265.0
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                     5.00 = 73000.00 FEET.
***********************
 FLOW PROCESS FROM NODE
                     5.00 TO NODE 10.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.00 DOWNSTREAM(FEET) = 369.00
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 17.95
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 194.11
 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) =
                                   25.35
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                    10.00 = 73250.00 FEET.
***********************
 FLOW PROCESS FROM NODE
                     5.00 TO NODE 10.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.618

FLOW VELOCITY(FEET/SEC.) = 6.48 FLOW DEPTH(FEET) = 1.93

```
*USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4574
 SUBAREA AREA(ACRES) = 21.12 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 286.1 TOTAL RUNOFF(CFS) = 211.75
 TC(MIN.) =
          25.35
*******************
 FLOW PROCESS FROM NODE
                     10.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 369.00 DOWNSTREAM(FEET) = 326.00
 FLOW LENGTH(FEET) = 1900.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 37.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.16
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 211.75
 PIPE TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 27.01
 LONGEST FLOWPATH FROM NODE
                       6.00 TO NODE
                                     15.00 = 75150.00 FEET.
 FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.554
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4691
 SUBAREA AREA(ACRES) = 41.62 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 327.7 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 27.01
-----
 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 13.380
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.444
 SUBAREA RUNOFF(CFS) = 11.00
 TOTAL AREA(ACRES) =
                  10.00 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 415.00 DOWNSTREAM(FEET) = 365.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1350.00 CHANNEL SLOPE = 0.0370
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 11.00
 FLOW VELOCITY(FEET/SEC.) = 4.47 FLOW DEPTH(FEET) = 1.11
 TRAVEL TIME(MIN.) = 5.03 Tc(MIN.) = 18.41
 LONGEST FLOWPATH FROM NODE 26.00 TO NODE
                                     30.00 = 7001350.00 FEET.
 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

```
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.989
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 31.97 SUBAREA RUNOFF(CFS) = 28.61
TOTAL AREA(ACRES) = 42.0 TOTAL RUNOFF(CFS) = 37.5
 TC(MIN.) =
          18. 41
********************
 FLOW PROCESS FROM NODE
                     30.00 TO NODE
                                   35.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 365.00 DOWNSTREAM(FEET) = 330.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1250.00 CHANNEL SLOPE = 0.0280
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 37.56
 FLOW VELOCITY(FEET/SEC.) = 5.48 FLOW DEPTH(FEET) = 1.85
 TRAVEL TIME(MIN.) = 3.80 Tc(MIN.) = 22.22
 LONGEST FLOWPATH FROM NODE 26.00 TO NODE
                                       35. 00 = 7002600. 00 FEET.
 FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 81
```

_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.762 *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4777 SUBAREA AREA(ACRES) = 16.10 SUBAREA RUNOFF(CFS) = 15.60 58.1 TOTAL RUNOFF (CFS) = TOTAL AREA(ACRES) = TC(MIN.) = 22.22.______ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 58.1 TC(MIN.) =PEAK FLOW RATE(CFS) = 48.88

Node 216 in proposed conditions

END OF RATIONAL METHOD ANALYSIS

^

25-Year Existing Condition Hydrology Model For Node 19

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

```
******************** DESCRIPTION OF STUDY ****************
* Carl ton Oaks / Hydrology Analysis
 25-YEAR RAINFALL EVENT
* EXISTING CONDITIONS TO NODES 19 & 216
 FILE NAME: R: \1759\HYD\DR\CALCS\AES\25\25EX. DAT
 TIME/DATE OF STUDY: 15:13 12/14/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 _____
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 1.900
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
   (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT)
NO.
   ===
   30. 0 20. 0 0. 018/0. 018/0. 020 0. 67 2. 00 0. 0313 0. 167 0. 0150
 1
   17. 0 10. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   20. 0 12. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
        10. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   16.0
   26. 0 18. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
   44. 0 12. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
*********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
_____
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 11.930
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.857
 SUBAREA RUNOFF(CFS) = 12.86
 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE
                       2.00 TO NODE
                                     3.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>>
```

Page 1

```
ELEVATION DATA: UPSTREAM(FEET) = 615.00 DOWNSTREAM(FEET) = 490.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2000.00 CHANNEL SLOPE = 0.0625
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 12.86
FLOW VELOCITY(FEET/SEC.) = 5.66 FLOW DEPTH(FEET) = 1.07
TRAVEL TIME(MIN.) = 5.88 TC(MIN.) = 17.81
 LONGEST FLOWPATH FROM NODE
                        1.00 TO NODE
                                        3.00 =
                                                2700.00 FEET.
********************
 FLOW PROCESS FROM NODE
                     2.00 TO NODE
                                   3.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.206
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 71.00 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 81.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.81
*******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 490.00 DOWNSTREAM(FEET) = 420.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0467 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                             80. 40
 FLOW VELOCITY(FEET/SEC.) = 8.02 FLOW DEPTH(FEET) = 2.24 TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 20.93
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                       4.00 = 4200.00 FEET.
********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   4.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.988
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 53.00 SUBAREA RUNOFF(CFS) = 47.42
 TOTAL AREA(ACRES) = 134.0 TOTAL RUNOFF(CFS) = 119.88
 TC(MIN.) = 20.93
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 420.00 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1700.00 CHANNEL SLOPE = 0.0271
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 119.88
 FLOW VELOCITY(FEET/SEC.) = 7.23 FLOW DEPTH(FEET) = 2.88
 TRAVEL TIME(MIN.) = 3.92 Tc(MIN.) = 24.85
 LONGEST FLOWPATH FROM NODE
                        1.00 TO NODE
                                        5. 00 = 5900. 00 FEET.
***********************
                       4.00 TO NODE 5.00 IS CODE = 81
 FLOW PROCESS FROM NODE
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

```
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.780
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 43.00 SUBAREA RUNOFF(CFS) = 34.44
 TOTAL AREA(ACRES) = 177.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 24.85
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 24.85
 RAINFALL INTENSITY(INCH/HR) = 1.78
 TOTAL STREAM AREA(ACRES) = 177.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            141. 76
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE
                                 7.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 12.460
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.778
 SUBAREA RUNOFF(CFS) = 12.50
TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 560.00 DOWNSTREAM(FEET) = 430.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0867
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 12.50
 FLOW VELOCITY(FEET/SEC.) = 6.39 FLOW DEPTH(FEET) = 0.99
 TRAVEL TIME(MIN.) = 3.91 Tc(MIN.) = 16.37
 LONGEST FLOWPATH FROM NODE
                       6.00 TO NODE
                                     8.00 = 71500.00 FEET.
******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.329
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 40.00 SUBAREA RUNOFF(CFS) = 41.93
TOTAL AREA(ACRES) = 50.0 TOTAL RUNOFF(CFS) = 52.4
 TC(MIN.) = 16.37
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 5.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 430.00 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00 CHANNEL SLOPE = 0.0373
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
```

CHANNEL FLOW THRU SUBAREA(CFS) = 52.41

```
TRAVEL TIME(MIN.) = 3.76 Tc(MIN.) = 20.14
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                      5. 00 = 73000. 00 FEET.
**************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 5.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.038
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 38.00 SUBAREA RUNOFF(CFS) = 34.85
 TOTAL AREA (ACRES) = 88.0 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 20.14
*********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.14
 RAINFALL INTENSITY(INCH/HR) = 2.04
 TOTAL STREAM AREA(ACRES) = 88.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
       RUNOFF
                 Tc
 STREAM
                       INTENSITY
                                   AREA
                 (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                                   (ACRE)
         141. 76
                24. 85 1. 780
20. 14 2. 038
    1
                                    177.00
         80. 71 20. 14
    2
                          2.038
                                    88.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.)
195.59 20.14
 NUMBER
                       (INCH/HOUR)
    1
                         2.038
         212. 24 24. 85
                         1.780
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 212.24 Tc(MIN.) = 24.85
 TOTAL AREA(ACRES) = 265.0
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                     5.00 = 73000.00 FEET.
************************
 FLOW PROCESS FROM NODE
                    5. 00 TO NODE 10. 00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.00 DOWNSTREAM(FEET) = 369.00
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.15
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 212.24
 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE
                                    10.00 = 73250.00 FEET.
***********************
 FLOW PROCESS FROM NODE
                     5.00 TO NODE 10.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.769

FLOW VELOCITY(FEET/SEC.) = 6.64 FLOW DEPTH(FEET) = 1.99

Page 4

```
*USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4574
 SUBAREA AREA(ACRES) = 21.12 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 286.1 TOTAL RUNOFF(CFS) = 231.53
 TC(MIN.) =
          25.08
*******************
 FLOW PROCESS FROM NODE
                      10.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 369.00 DOWNSTREAM(FEET) = 326.00
 FLOW LENGTH(FEET) = 1900.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 40.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.34
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 231.53
 PIPE TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) =
                                      26.71
 LONGEST FLOWPATH FROM NODE
                        6.00 TO NODE
                                       15.00 = 75150.00 FEET.
                     10.00 TO NODE 15.00 IS CODE = 81
 FLOW PROCESS FROM NODE
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.699
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4691
 SUBAREA AREA(ACRES) = 41.62 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 327.7 TOTAL RUNOFF(CFS) =
                                             38.88
                                                                   Node 19 in proposed
                                             261.16
                                                                   conditions
 TC(MIN.) = 26.71
 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 USER SPECIFIED Tc(MIN.) = 13.380
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.653
 SUBAREA RUNOFF(CFS) = 11.94
 TOTAL AREA(ACRES) =
                   10.00 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
_____
 ELEVATION DATA: UPSTREAM(FEET) = 415.00 DOWNSTREAM(FEET) = 365.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1350.00 CHANNEL SLOPE = 0.0370
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 11.94
 FLOW VELOCITY(FEET/SEC.) = 4.58 FLOW DEPTH(FEET) = 1.14
 TRAVEL TIME(MIN.) = 4.91 Tc(MIN.) = 18.29
 LONGEST FLOWPATH FROM NODE 26.00 TO NODE
                                      30.00 = 7001350.00 FEET.
 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<***
```

```
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.169
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4500
 SUBAREA AREA(ACRES) = 31.97 SUBAREA RUNOFF(CFS) = 31.20
TOTAL AREA(ACRES) = 42.0 TOTAL RUNOFF(CFS) = 40.0
 TC(MIN.) = 18.29
***********************
 FLOW PROCESS FROM NODE
                   30.00 TO NODE 35.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 365.00 DOWNSTREAM(FEET) = 330.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1250.00 CHANNEL SLOPE = 0.0280
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 40.96
 FLOW VELOCITY(FEET/SEC.) = 5.60 FLOW DEPTH(FEET) = 1.91
 TRAVEL TIME(MIN.) = 3.72 Tc(MIN.) = 22.01
 LONGEST FLOWPATH FROM NODE 26.00 TO NODE
                                   35. 00 = 7002600. 00 FEET.
********************
 FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.925
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4777
 SUBAREA AREA(ACRES) = 16.10 SUBAREA RUNOFF(CFS) = 17.04
 TOTAL AREA (ACRES) = 58.1 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 22.01
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                     58.1 \text{ TC}(MIN.) =
 PEAK FLOW RATE(CFS) = 53.39
______
 END OF RATIONAL METHOD ANALYSIS
```

.

	CARLTON OAKS / EXISTING CONDITIONS														
Noc	d 0 #		Flau.	ation	Longth			PUT DATA				1	If Channal		16
From	To	code	Up	Down	Length (FT)	slope	total	a (AC) impervious	perviousne	Soil Type*	C value	Base (ft)	If Channel Z:1	maning	If memory Bank #
301	302	2	320.0	315.0	85	6%	0.16	0.04	25%	D	0.49	base (11)	Z. I	maning	Dalik #
302	303	5	315.0	310.6	488	0.9%	3.33	0.83	25%	D/A	0.49	3	1:20	0.030	
303	264	1	0.10.0	01010	100	0.770	0.00	0.00	2070	5,,,	0.17			0.000	4-1
315	316	2	321.5	315.0	85	8%	0.11	0.03	25%	D	0.49				
316	317	5	315.0	310.0	648	0.8%	4.81	1.20	25%	D/A	0.49	3	1:20	0.030	
317	264	1													4-2
261	262	2	349.5	347.5	100	2%	0.13	0.07	50%	D	0.63				
262	263	6	347.5	322.0	880	3%	2.08	1.04	50%	D/A	0.63				
263	264	5	322.0	314.0	624	1.3%	0.00	0.00	0%	Α	0.35	16	1:20	0.030	
264	264	1													4-3
250	251	2	351.5	350.0	85	2%	0.22	0.06	25%	D	0.49				
251	264	5	350.0	319.1	1127	2.7%	11.10	2.78	25%	D/A	0.49	3	1:20	0.030	
264	264	1													4-4
264	143	5	314.0	304.0	1590	0.6%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
143	143	1													2-1
216	216	7	205.2	0400	05.	A=	58.07	0 ==	0001	Tc =	21.43	Q =	80	0.000	
216	143	5	335.0	310.0	856	2.9%	10.71	8.57	80%	D	0.79	3	1:20	0.030	2.0
143	143	1	2212	201.1	540	0.50/		0.00	001		0.05		4.00		2-2
143	132	5	304.0	301.4	518	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
132	132	8					2.66	1.33	50%	D	0.63				2.1
132	132	1	417.0	412.0	100	40/	0.22	0.11	F00/	D	0.72				2-1
129	130	2	417.0	413.0	100	4%	0.22	0.11	50%	D	0.63				
130	131	6	413.0	354.0	1282	5%	12.47	6.24	50%	D	0.63				
131	132	3	349.0	305.0	912	4.8%								0.013	
132	132	8					14.50	7.25	50%	D	0.61				
132	132	1													2-2
132	127	5	301.4	299.8	311	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
127	127	8					0.92	0.46	50%	D	0.44				
127	127	1								_					2-1
124	125	2	355.0	353.0	85	2%	0.12	0.06	50%	D	0.63				
125	126	6	353.0	335.0	756	2%	3.69	1.85	50%	D	0.63			0.012	
126 127	127 127	3 1	331.0	315.0	442	3.6%								0.013	2-2
127	112	5	299.8	296.4	678	0.5%	0.00	0.00	0%	D/A	0.35	16	1:20	0.030	Z-Z
112	112	8	277.0	270.4	070	0.376	1.43	0.72	50%	D/A D	0.50	10	1.20	0.030	
112	112	1					1.43	0.72	3070	U	0.50				2-1
112	112	7				A =	54.44			Tc =	21.61	Q =	79.21		21
112	112	1					311			.5-	201		, , , _ 1		2-2
112	103	5	296.4	289.5	1386	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
103	103	8					1.92	0.96	50%	D/B	0.63				
103	20	5	289.5	286.4	609	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
20	20	1													2-1
19	19	7				A =	327.74			Tc =	25.61	Q =	405.36		
19	20	5	315.0	296.8	718	2.5%	7.20	0.72	10%	D	0.41	3	1:20	0.030	
20	20	1													2-2
20	40	5	286.4	284.0	482	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
40	40	1													2-1
38	39	2	330.0	308.0	100	22%	0.18	0.02	10%	D	0.41				
39	40	5	308.0	295.9	656	1.8%	4.90	0.49	10%	D/A	0.35	3	1:20	0.030	
40	40	1								_					2-2
Total							523.11	29.79	6%	D	0.38				

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

```
******* DESCRIPTION OF STUDY ****************
* Carlton Oaks / Hydrology Analysis
* 100-YEAR RAINFALL EVENT
* EXISTING CODITIONS
     ************
 FILE NAME: R: \1759\HYD\DR\CALCS\AES\100EX. DAT
 TIME/DATE OF STUDY: 15:33 12/14/2023
 ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 _____
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
   (FT) (FT) SIDE / SIDE/ WAY (FT)
NO.
                                       (FT) (FT) (FT)
   ===
   30. 0 20. 0 0. 018/0. 018/0. 020 0. 67 2. 00 0. 0313 0. 167 0. 0150
 1
    17. 0 10. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
    20. 0 12. 0 0. 020/0. 020/0. 020 0. 50 1. 50 0. 0313 0. 125 0. 0150
        10. 0 0. 020/0. 020/0. 020 0. 50
                                       1. 50 0. 0313 0. 125 0. 0150
    16.0
        18. 0 0. 020/0. 020/0. 020 0. 50
   26.0
                                       1. 50 0. 0313 0. 125 0. 0150
    44.0
         12. 0 0. 020/0. 020/0. 020 0. 50
                                       1. 50 0. 0313 0. 125 0. 0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 PARKS, GOLF COURSES RUNOFF COEFFICIENT = .4900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                            5.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.994
 SUBAREA RUNOFF(CFS) = 0.47
 TOTAL AREA(ACRES) =
                     0.16 TOTAL RUNOFF(CFS) =
```

```
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
```

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<

______ ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 310.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 488.00 CHANNEL SLOPE = 0.0090

CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 20.000

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.854

*USER SPECIFIED(SUBAREA):

PARKS, GOLF COURSES RUNOFF COEFFICIENT = .4900

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.47

AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 5.52

Tc(MIN.) = 11.13

SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 6.29

AREA-AVERAGE RUNOFF COEFFICIENT = 0.490

TOTAL AREA(ACRES) = 3.5PEAK FLOW RATE(CFS) = 6.59

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 1.70

LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 573.00 FEET.

FLOW PROCESS FROM NODE 303.00 TO NODE 264.00 IS CODE = 1

>>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <

______ TOTAL NUMBER OF STREAMS = 4

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 11.13 RAINFALL INTENSITY(INCH/HR) =

TOTAL STREAM AREA(ACRES) = 3.49

PEAK FLOW RATE(CFS) AT CONFLUENCE = 6. 59

FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

*USER SPECIFIED(SUBAREA):

SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4900

INITIAL SUBAREA FLOW-LENGTH(FEET) =

UPSTREAM ELEVATION(FEET) = 321.50

DOWNSTREAM ELEVATION(FEET) = 315.00 ELEVATION DIFFERENCE(FEET) = 6.50

URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.139

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.342

SUBAREA RUNOFF(CFS) = 0.34

TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =

FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<

ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 310.00

CHANNEL LENGTH THRU SUBAREA(FEET) = 648.00 CHANNEL SLOPE = 0.0077

CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 20.000

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.587 *USER SPECIFIED(SUBAREA):

SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4900

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.48

AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 7.29

Tc(MIN.) = 12.43

SUBAREA AREA(ACRES) = 4.81 SUBAREA RUNOFF(CFS) = 8.45

AREA-AVERAGE RUNOFF COEFFICIENT = 0.490

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.58 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15 STREET FLOW TRAVEL TIME(MIN.) = 4.10 Tc(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.100 *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630 SUBAREA AREA(ACRES) = 2.08 SUBAREA RUNOFF(CFS) = 5.37TOTAL AREA(ACRES) = 2. 2 PEAK FLOW RATE(CFS) = 5.71

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.68
 FLOW VELOCITY(FEET/SEC.) = 4.04 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 263.00 =
**********************
 FLOW PROCESS FROM NODE 263.00 TO NODE 264.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.00 DOWNSTREAM(FEET) = 314.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 624.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 5.71
 FLOW VELOCITY(FEET/SEC.) = 1.80 FLOW DEPTH(FEET) = 0.19
 TRAVEL TIME(MIN.) = 5.78 Tc(MIN.) = 15.88
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                       264.00 =
                                               1604.00 FEET.
********************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.88
 RAINFALL INTENSITY(INCH/HR) =
                          3.06
 TOTAL STREAM AREA(ACRES) = 2.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 5.71
*********************
 FLOW PROCESS FROM NODE 250.00 TO NODE 251.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 351.50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.691
 SUBAREA RUNOFF (CFS) = 0.51
                   0.22 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 251.00 TO NODE 264.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 319.10
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1127.00 CHANNEL SLOPE = 0.0274
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.616
 *USER SPECIFIED(SUBAREA):
 PARKS, GOLF COURSES RUNOFF COEFFICIENT = . 4900
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.61
 AVERAGE FLOW DEPTH(FEET) = 0.55 TRAVEL TIME(MIN.) = 4.08
 Tc(MIN.) = 12.28
 SUBAREA AREA(ACRES) = 11.10
                              SUBAREA RUNOFF(CFS) = 19.67
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.490
```

100EX. OUT

TOTAL AREA(ACRES) = 11.3 PEAK FLOW RATE(CFS) = 20.06

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.79 FLOW VELOCITY(FEET/SEC.) = 5.54

LONGEST FLOWPATH FROM NODE 250.00 TO NODE 264.00 = 1212. 00 FEET.

FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =

______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______

TOTAL NUMBER OF STREAMS = 4

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:

TIME OF CONCENTRATION(MIN.) = 12.28 RAINFALL INTENSITY(INCH/HR) = 3.62 TOTAL STREAM AREA(ACRES) = 11.32

PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.06

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MI N.)	(INCH/HOUR)	(ACRE)
1	6. 59	11. 13	3.854	3.49
2	8. 65	12. 43	3. 587	4. 92
3	5. 71	15.88	3.063	2. 21
4	20.06	12. 28	3. 616	11. 32

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(I NCH/HOUR)
1	36. 50	11. 13	3. 854
2	39. 19	12. 28	3. 616
3	39. 15	12.43	3. 587
4	35, 32	15, 88	3.063

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 39.19 Tc(MIN.) = 12.28 TOTAL AREA(ACRES) = 21.9

LONGEST FLOWPATH FROM NODE 261.00 TO NODE 264.00 =

FLOW PROCESS FROM NODE 264.00 TO NODE 143.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<

ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 304.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1590.00 CHANNEL SLOPE = 0.0063 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00

CHANNEL FLOW THRU SUBAREA(CFS) = 39.19

FLOW VELOCITY(FEET/SEC.) = 3.02 FLOW DEPTH(FEET) = 0.74

TRAVEL TIME(MIN.) = 8.78 Tc(MIN.) = 21.06

LONGEST FLOWPATH FROM NODE 261.00 TO NODE 143.00 = 3194.00 FEET.

FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 21.06

RAINFALL INTENSITY(INCH/HR) = 2.55 TOTAL STREAM AREA(ACRES) = 21.94

PEAK FLOW RATE(CFS) AT CONFLUENCE =

39. 19

100EX. OUT FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 7 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE< ______ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 21.43 RAIN INTENSITY(INCH/HOUR) = 2.52 TOTAL AREA(ACRES) = 58.07 TOTAL RUNOFF(CFS) = ********************** FLOW PROCESS FROM NODE 216.00 TO NODE 143.00 IS CODE = 51 ----->>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> ______ ELEVATION DATA: UPSTREAM(FEET) = 335.00 DOWNSTREAM(FEET) = 310.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 856.00 CHANNEL SLOPE = 0.0292 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.405 *USER SPECIFIED(SUBAREA): COMMERCIAL AREA RUNOFF COEFFICIENT = .7900 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 8.53 AVERAGE FLOW DEPTH(FEET) = 1.67 TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) = 23.10SUBAREA AREA (ACRES) = 10.71 SUBAREA RUNOFF (CFS) = 20.35 AREA-AVERAGE RUNOFF COEFFICIENT = 0.584 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 68.8 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.73 FLOW VELOCITY(FEET/SEC.) = 8.66 LONGEST FLOWPATH FROM NODE 315.00 TO NODE 143.00 = FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 1 ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 23.10RAINFALL INTENSITY(INCH/HR) = 2.41 TOTAL STREAM AREA(ACRES) = 68.78 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) 21. 06 2. 553 23. 10 2. 405 21.94 1 39. 19 2 96. 57 23. 10 2.405 68.78 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 127. 24 21. 06 1 2.553 133. 49 23. 10 2.405 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 133.49 Tc(MIN.) = 23.10

TOTAL AREA(ACRES) = 90.7

LONGEST FLOWPATH FROM NODE 261.00 TO NODE 143.00 = 3194.00 FEET.

FLOW PROCESS FROM NODE 143.00 TO NODE 132.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<

```
ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 301.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 518.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 133.49
 FLOW VELOCITY(FEET/SEC.) = 4.28 FLOW DEPTH(FEET) = 1.62
TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 25.12
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      132.00 =
*********************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.279
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5663
 SUBAREA AREA(ACRES) = 2.66 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                   93.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           25. 12
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.12
RAINFALL INTENSITY(INCH/HR) = 2.28
 TOTAL STREAM AREA(ACRES) = 93.38
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             133. 49
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 417.00
 DOWNSTREAM ELEVATION (FEET) = 413.00
 ELEVATION DIFFERENCE(FEET) =
                          4.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                     5. 263
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.245
 SUBAREA RUNOFF(CFS) = 0.87
 TOTAL AREA(ACRES) =
                   0. 22 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 413.00 DOWNSTREAM ELEVATION(FEET) = 354.00
 STREET LENGTH(FEET) = 1282.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
```

Page 7

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                18 28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) =
                             13.01
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.36
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.12
 STREET FLOW TRAVEL TIME(MIN.) = 3.99 Tc(MIN.) =
                                              9.25
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.342
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 SUBAREA AREA(ACRES) = 12.47
                             SUBAREA RUNOFF(CFS) = 34.11
 TOTAL AREA(ACRES) = 12.7
                             PEAK FLOW RATE(CFS) =
                                                      34.71
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.07
 FLOW VELOCITY(FEET/SEC.) = 6.21 DEPTH*VELOCITY(FT*FT/SEC.) = 2.90
 LONGEST FLOWPATH FROM NODE 129.00 TO NODE 131.00 = 1382.00 FEET.
********************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 349.00 DOWNSTREAM(FEET) = 305.00 FLOW LENGTH(FEET) = 912.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.41
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 34.71
 PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 10.17
 LONGEST FLOWPATH FROM NODE 129.00 TO NODE
                                      132.00 = 2294.00 FEET.
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.082
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6193
 SUBAREA AREA(ACRES) = 14.50 SUBAREA RUNOFF(CFS) = 36.11
 TOTAL AREA(ACRES) = 27.2 TOTAL RUNOFF(CFS) = 68.74
 TC(MIN.) = 10.17
***********************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.17
 RAINFALL INTENSITY(INCH/HR) = 4.08
 TOTAL STREAM AREA(ACRES) = 27.19
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 68.74
 ** CONFLUENCE DATA **
                  Tc
 STREAM
       RUNOFF
                          INTENSITY
                                       AREA
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR)
                                       (ACRE)
          133.49
    1
                  25. 12 2. 279
                                        93.38
    2
          68.74
                10. 17
                             4.082
                                        27.19
```

STREET PARKWAY CROSSFALL(DECIMAL) = 0.020

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
    1
         143. 26
                10. 17
                         4.082
    2
         171.87
                25. 12
                         2.279
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 171.87
                          Tc(MIN.) =
                                    25. 12
 TOTAL AREA(ACRES) =
                   120.6
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 132.00 =
                                             3712.00 FFFT.
***********************
 FLOW PROCESS FROM NODE 132.00 TO NODE 127.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.40 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 311.00 CHANNEL SLOPE = 0.0051
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 171.87
FLOW VELOCITY(FEET/SEC.) = 4.67 FLOW DEPTH(FEET) = 1.86
TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 26.23
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 127.00 =
                                            4023.00 FEET.
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.216
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5770
 SUBAREA AREA(ACRES) = 0.92 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 121.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 26.23
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 26.23
 RAINFALL INTENSITY(INCH/HR) = 2.22
 TOTAL STREAM AREA(ACRES) = 121.49
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.824
 SUBAREA RUNOFF(CFS) = 0.44
 TOTAL AREA(ACRES) =
                  0.12 TOTAL RUNOFF(CFS) =
******************
```

>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<

>>>>(STREET TABLE SECTION # 1 USED) <<<<

UPSTREAM ELEVATION(FEET) = 353.00 DOWNSTREAM ELEVATION(FEET) = 335.00 STREET LENGTH(FEET) = 756.00 CURB HEIGHT(INCHES) = 8.0

STREET HALFWIDTH(FEET) = 30.00

DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018

OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

STREET PARKWAY CROSSFALL(DECIMAL) = 0.020

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.36 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

STREET FLOW DEPTH(FEET) = 0.31

HALFSTREET FLOOD WIDTH(FEET) =

AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18

PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.00

STREET FLOW TRAVEL TIME(MIN.) = 3.96 Tc(MIN.) = 9.83

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.175

*USER SPECIFIED(SUBAREA):

NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300

AREA-AVERAGE RUNOFF COEFFICIENT = 0.630

SUBAREA AREA(ACRES) = 3.69 SUBAREA RUNOFF(CFS) = 9.70 TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) =

TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) = 10.02

END OF SUBAREA STREET FLOW HYDRAULICS:

DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.52

FLOW VELOCITY(FEET/SEC.) = 3.63 DEPTH*VELOCITY(FT*FT/SEC.) = 1.34

LONGEST FLOWPATH FROM NODE 124.00 TO NODE 126.00 = 841.00 FEET.

FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<

ELEVATION DATA: UPSTREAM(FEET) = 331.00 DOWNSTREAM(FEET) = 315.00

FLOW LENGTH(FEET) = 442.00 MANNING'S N = 0.013

ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 10.88

ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 10.02

PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 10.50 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 127.00 127.00 = 1283.00 FEET.

FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 10.50

RAINFALL INTENSITY(INCH/HR) = 4.00

TOTAL STREAM AREA(ACRES) = 3.81

PEAK FLOW RATE(CFS) AT CONFLUENCE =

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MI N.)	(INCH/HOUR)	(ACRE)
1	171.87	26. 23	2. 216	121.49
2	10. 02	10. 50	3. 999	3.81

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** RUNOFF Tc STREAM INTENSITY NUMBER (CFS) (INCH/HOUR) (MIN.)(MIN.) 10. 50 26. 23 105. 27 10.50 3.999 1 2 177. 42 2.216 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 177.42 Tc(MIN.) = 26.23

TOTAL AREA(ACRES) = 125.3

127. 00 = LONGEST FLOWPATH FROM NODE 261.00 TO NODE 4023.00 FEET.

FLOW PROCESS FROM NODE 127.00 TO NODE 112.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<

______ ELEVATION DATA: UPSTREAM(FEET) = 299.80 DOWNSTREAM(FEET) = 296.40 CHANNEL LENGTH THRU SUBAREA (FEET) = 678.00 CHANNEL SLOPE = 0.0050 CHANNEL BASE (FEET) = 16.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 177.42 FLOW VELOCITY(FEET/SEC.) = 4.69 FLOW DEPTH(FEET) = 1.91 TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 28.64 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 112.00 = 4701.00 FEET.

FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.094 *USER SPECIFIED(SUBAREA):

NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900

AREA-AVERAGE RUNOFF COEFFICIENT = 0.5776

SUBAREA AREA(ACRES) = 1.43 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 126.7 TOTAL RUNOFF(CFS) =

TC(MIN.) =28.64

NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE

FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE =

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 28.64 RAINFALL INTENSITY(INCH/HR) = 2.09

TOTAL STREAM AREA(ACRES) = 126.73

PEAK FLOW RATE(CFS) AT CONFLUENCE = 177. 42

FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7

>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE

USER-SPECIFIED VALUES ARE AS FOLLOWS:

TC(MIN) = 21.61 RAIN INTENSITY(INCH/HOUR) = 2.51

TOTAL AREA(ACRES) = 54.44 TOTAL RUNOFF(CFS) =

FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.61
 RAINFALL INTENSITY (INCH/HR) = 2.51
 TOTAL STREAM AREA(ACRES) = 54.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    79. 21
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                     Tc
                             INTENSITY
                                          AREA
                    (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
                                         (ACRE)
           177.42
                   28. 64
    1
                              2.094
                                          126.73
           79. 21
                               2.511
     2
                   21.61
                                           54.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                           INTENSITY
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
           227. 15 21. 61
                              2.511
     1
         243. 47 28. 64
     2
                              2.094
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 243.47 Tc(MIN.) = TOTAL AREA(ACRES) = 181.2
                                           28.64
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 112.00 = 4701.00 FEET.
 FLOW PROCESS FROM NODE 112.00 TO NODE 103.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.40 DOWNSTREAM(FEET) = 289.50
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1386.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                243.47
 FLOW VELOCITY(FEET/SEC.) = 5.16 FLOW DEPTH(FEET) = 2.29
 TRAVEL TIME(MIN.) = 4.48 Tc(MIN.) = 33.12
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                         103.00 =
********************
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.907
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5787
 SUBAREA AREA(ACRES) = 1.92 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 183.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 33.12
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 20.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 289.50 DOWNSTREAM(FEET) = 286.40
 CHANNEL LENGTH THRU SUBAREA(FEET) = 609.00 CHANNEL SLOPE = 0.0051
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 243.47
FLOW VELOCITY(FEET/SEC.) = 5.20 FLOW DEPTH(FEET) = 2.28
 TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) = 35.07
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                            20.00 =
                                                     6696.00 FEET.
```

```
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 35.07
RAINFALL INTENSITY(INCH/HR) = 1.84
 TOTAL STREAM AREA(ACRES) = 183.09
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               243.47
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 7
------
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 25.61 RAIN INTENSITY(INCH/HOUR) = 2.25
 TOTAL AREA(ACRES) = 327.74 TOTAL RUNOFF(CFS) =
**********************
 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 296.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 718.00 CHANNEL SLOPE = 0.0253 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.196
 *USER SPECIFIED(SUBAREA):
 PARKS, GOLF COURSES RUNOFF COEFFICIENT = .4100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 11.91
 AVERAGE FLOW DEPTH(FEET) = 3.46 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 26.61
                             SUBAREA RUNOFF(CFS) =
 SUBAREA AREA(ACRES) = 7.20
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.547
 TOTAL AREA(ACRES) = 334.9
                               PEAK FLOW RATE(CFS) =
                                                   405.36
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 3.45 FLOW VELOCITY(FEET/SEC.) = 11.89
 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 20.00 =
                                               2001, 00 FFFT.
***********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 26.61
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 334.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               405.36
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                   Tc
                         INTENSITY
                                     AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
         243.47
    1
                 35. 07
                           1.838
                                     183.09
                           2.196
         405. 36 26. 61
                                     334.94
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STRFAM
       RUNOFF Tc
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
```

```
609. 15 26. 61
582. 77 35. 07
                          1.838
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 609.15 Tc(MIN.) = TOTAL AREA(ACRES) = 518.0
                                      26.61
 LONGEST FLOWPATH FROM NODE
                        261.00 TO NODE
                                      20.00 =
                                              6696.00 FEET.
**********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 40.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 286.40 DOWNSTREAM(FEET) = 284.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 482.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 609.15
 FLOW VELOCITY(FEET/SEC.) = 6.81 FLOW DEPTH(FEET) = 3.79
 TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 27.80
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      40.00 = 7178.00 FEET.
********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.80
RAINFALL INTENSITY(INCH/HR) = 2.13
 TOTAL STREAM AREA(ACRES) = 518.03
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             609, 15
*******************
 FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 PARKS, GOLF COURSES RUNOFF COEFFICIENT = .4100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                         22. 00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.765
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.889
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) =
                  0.18 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE
                     39.00 TO NODE
                                  40.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 295.90
 CHANNEL LENGTH THRU SUBAREA(FEET) = 656.00 CHANNEL SLOPE = 0.0184
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.292
 *USER SPECIFIED(SUBAREA):
 PARKS, GOLF COURSES RUNOFF COEFFICIENT = .3500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.00
 AVERAGE FLOW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) = 3.65
 Tc(MIN.) =
           9.42
 SUBAREA AREA(ACRES) = 4.90
                             SUBAREA RUNOFF(CFS) = 7.36
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.352
```

2. 196

1

100EX. OUT

TOTAL AREA(ACRES) = 5. 1 PEAK FLOW RATE(CFS) = 7.68

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 3.62

LONGEST FLOWPATH FROM NODE 38.00 TO NODE 40.00 = 756.00 FEET.

FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = -----

>>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 9.42 RAINFALL INTENSITY(INCH/HR) = 4.29 TOTAL STREAM AREA(ACRES) = 5.08

PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.68

** CONFLUENCE DATA **

STREAM RUNOFF Tc INTENSITY AREA **NUMBER** (CFS) (MIN.) (INCH/HOUR) (ACRE) 2. 135 609.15 27.80 518.03 1 2 9.42 4.292 5.08 7.68

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM RUNOFF Tc INTENSITY **NUMBER** (CFS) (MIN.)(INCH/HOUR) 310.71 1 9.42 4. 292 2 612. 97 27.80 2.135

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 612.97 Tc(MIN.) = 27.80

TOTAL AREA(ACRES) = 523.1

LONGEST FLOWPATH FROM NODE 261.00 TO NODE 40.00 = 7178.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 523.1 TC(MIN.) =27.80

PEAK FLOW RATE(CFS) = 612.97

_____ ______

END OF RATIONAL METHOD ANALYSIS

-AES Hydrology Analysis Proposed Conditions

Note Coole December Decembe							CARI		S / PROPOSED							
	Noc	de#		Eleva	ation	Longth					Sail Type*	Cyalua		If Channel		If memory
201 202 6 223 303 317 790 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,						Ü					3.		Base (ft)	Z:1	maning	Bank #
1922 3020 8																
200 201 3 3 3 3 3 3 3 3 3				323.5	320.3	317	1.0%									
246				316.3	314.9	275	0.5%	0.32	0.27	0370	D	0.02			0.012	
3112 1312 8 3235 3213 593 0.796 1.31 1.11 88% 0 0.82																4-1
312 312 8 17 310 295 238 130 130 295 238 131 310 313 3																
313				323.5	321.3	293	0.7%									
315 316 2 2 327 6 327 0 6 10% 0.05 0.04 88% A 0.02				217.2	310.5	205	2 3%	1.36	1.16	85%	D	0.82			0.012	
316 317 6 327 320 6 327 300 6 37 106 1076 0.05 0.06 85% D 0.62 37 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37				317.3	310.3	273	2.570								0.012	4-2
3177 317 8		316	2	327.6	327.0	60	1.0%	0.05	0.04	85%	Α	0.82				
1317 81				327.0	320.6	637	1.0%									
1964 1																
321 322 0 3150 3150 126 245 10% 1.32 3.31 22% D 0.49								0.41	0.04	10%	D	0.41				4-3
1922 264				322.0	315.0	100	7.0%	0.05	0.01	25%	D	0.49				1.5
1960	321	322	6	315.0	312.5	245	1.0%	1.23	0.31	25%	D	0.49				
256																
251 252 6 3447 3276 634 27% 138 1.110 89% D/A 0.79				3/4 0	2// 7	65	2.0%	0.00	0.06	80%	D	0.70				10-1
252 252 8																
252 257 3 322.6 3181, 447 1.0%				,	227.0	551	/0									
254 25 6 33 0 335 0 65 20% 0.08 0.06 80% A 0.76	252		3	322.6	318.1	447	1.0%								0.012	
255				201 -	200 -	,-	0.00:	0.00	0.07	000/		67:				2-1
255 255 88																
255 256 33 320 3185 326 0.7% 2.00 1.60 80% A 0.76				330.0	323.9	274	1.470									
256 256 88				320.9	318.5	326	0.7%		2.01	23,0					0.012	
256																
257 257				040.5	040.4	70	0.504	1.82	1.46	80%	Α	0.76			0.010	
287 264 3 3155 3140 96 15%				318.5	318.1	/8	0.5%								0.012	2.2
264 1 4 5 341 50% 0 0.03 50% D 0.03 5 3-1 259 259 23 341.0 323.0 574 3.1% 0.90 0.45 50% A 0.55 2 1:10 0.015 260 264 264 1 5 323.0 314.0 151 6.0% 0.00 <t< td=""><td></td><td></td><td></td><td>315.5</td><td>314.0</td><td>96</td><td>1.5%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.012</td><td>2-2</td></t<>				315.5	314.0	96	1.5%								0.012	2-2
259 260 5 3410 3230 574 3.1% 0.90 0.45 50% A 0.55 2 1.10 0.015 260 264 5 3230 314.0 151 6.0% 0.00 0.00 0% A 0.20 16 1:20 0.030 264 264 1 262 283 6 347.5 100 2.00% 0.10 0.05 50% D 0.63 262 283 6 347.5 322.0 314.0 184 4.3% 0.00 0.00 0% A/D 0.35 16 1:20 0.030 264 264 11 1 1 1 1 11:1 1 11:1 1 11:2 1 11:1 1 11:2 20 12:2 20 16 1:20 0.030 13:3 3 3 3 18:1 10:0 11:1 1 11:2 20		264														3-1
260																
264																
Zefi				323.0	314.0	101	0.076	0.00	0.00	076	A	0.20	10	1.20	0.030	3-2
263				349.5	347.5	100	2.00%	0.10	0.05	50%	D	0.63				0.2
264																
264 264 11 264 218 5 314.0 304.0 2044 0.5% 0.00				322.0	314.0	184	4.3%	0.00	0.00	0%	A/D	0.35	16	1:20	0.030	0.0
264																
264 218 5																
200		218	5	314.0	304.0	2044	0.5%	0.00	0.00	0%	A/D	0.35	16	1:20	0.030	
201																10-1
202 203 3 330.4 328.7 168 1.00% 1.17 0.94 80% D 0.79 0.012 203 203 8 1.17 0.94 80% D 0.79 0.012 204 204 8 1.00% 1.06 0.85 80% D 0.79 0.012 204 204 205 3 326.7 321.2 220 2.50% 0.66 0.53 80% D 0.79 0.012 205 205 8																
203 203 8 328.7 326.7 195 1.00% 1.17 0.94 80% D 0.79 0.012								0.89	0.71	δU%	U	0.79			0.012	
203				330.1	520.7	.50		1.17	0.94	80%	D	0.79			0.012	
204 205 3 326.7 321.2 220 2.50%	203	204	3	328.7	326.7	195	1.00%								0.012	
205 205 8				201 =	204.5	005	0.500	1.06	0.85	80%	D	0.79			0.045	
205 211 3 321.2 316.6 187 2.50%				326.7	321.2	220	2.50%	0.66	0.52	80%	D	0.70			0.012	
211 211 1 2.1 206 207 2 337.4 334.5 85 3.47% 0.05 0.04 80% D 0.79 0.79 0.012 0.079 0.012 </td <td></td> <td></td> <td></td> <td>321.2</td> <td>316.6</td> <td>187</td> <td>2.50%</td> <td>0.00</td> <td>0.55</td> <td>OU /0</td> <td>U</td> <td>0.79</td> <td></td> <td></td> <td>0.012</td> <td></td>				321.2	316.6	187	2.50%	0.00	0.55	OU /0	U	0.79			0.012	
207 208 6 334.5 325.0 296 3.18% 1.33 1.06 80% D 0.79 0.79 208 208 8 0.76 0.61 80% D 0.79 0.012 208 209 3 320.0 319.4 120 0.50% 0.89 0.71 80% D 0.79 0.012 209 209 8 0.44 0.35 80% D 0.79 0.012 209 210 3 319.4 317.5 382 0.50% 0.044 0.35 80% D 0.79 0.012 210 210 8 0.50 0.55 0.44 80% D 0.79 0.012 211 211 3 317.5 316.6 141 0.69% 0.55 0.44 80% D 0.79 0.012 217 217 1 0.002 0.002 0.002 0.002 0.002 0.																2-1
208 208 8 0.76 0.61 80% D 0.79 0.012 208 209 3 320.0 319.4 120 0.50% 0.71 80% D 0.79 0.012 209 209 8 0.44 0.35 80% D 0.79 0.012 209 210 3 319.4 317.5 382 0.50% 0.012 0.012 0.012 0.012 210 210 8 0.55 0.44 80% D 0.79 0.012 210 211 3 317.5 316.6 141 0.69% 0.55 0.44 80% D 0.79 0.012 211 211 3 316.6 315.2 132 1.00% 0.02 0.012 0.012 0.012 217 217 1 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012																
208 209 3 320.0 319.4 120 0.50% 0.89 0.71 80% D 0.79 0.012 209 209 8 0.44 0.35 80% D 0.79 0.012 209 210 3 319.4 317.5 382 0.50% 0.012 </td <td></td> <td></td> <td></td> <td>334.5</td> <td>325.0</td> <td>296</td> <td>3.18%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				334.5	325.0	296	3.18%									
209 209 8 0.89 0.71 80% D 0.79 <td></td> <td></td> <td></td> <td>320 N</td> <td>319.4</td> <td>120</td> <td>0.50%</td> <td>0.76</td> <td>0.61</td> <td>გU%</td> <td>Ŋ</td> <td>0.79</td> <td></td> <td></td> <td>0.012</td> <td></td>				320 N	319.4	120	0.50%	0.76	0.61	გ U%	Ŋ	0.79			0.012	
209 209 8 0.44 0.35 80% 0 0.79 0.012 209 210 3 319.4 317.5 382 0.50% 0.012 </td <td></td> <td></td> <td></td> <td>520.0</td> <td>517.4</td> <td>120</td> <td>0.0070</td> <td>0.89</td> <td>0.71</td> <td>80%</td> <td>D</td> <td>0.79</td> <td></td> <td></td> <td>0.012</td> <td></td>				520.0	517.4	120	0.0070	0.89	0.71	80%	D	0.79			0.012	
210 210 8 1.22 0.98 80% D 0.79 <td>209</td> <td>209</td> <td>8</td> <td></td>	209	209	8													
210 210 8 0.55 0.44 80% 0.79 0.79 0.012 210 211 3 317.5 316.6 141 0.69% 0.012 0.01				319.4	317.5	382	0.50%								0.012	
210 211 3 317.5 316.6 141 0.69% 0.012 211 211 1 2-2 211 217 3 316.6 315.2 132 1.00% 0.012 217 217 1 2-1 212 213 2 333.7 331.4 75 3.01% 0.08 0.06 80% D 0.79 213 217 6 331.4 320.8 523 2.03% 1.12 0.90 80% D 0.79 217 217 8 0.62 0.50 80% D 0.79 217 217 1 0.62 0.50 80% D 0.79																
211 211 1 211 217 3 316.6 315.2 132 1.00% 217 217 1 0.012 212 213 2 333.7 331.4 75 3.01% 0.08 0.06 80% D 0.79 213 217 6 331.4 320.8 523 2.03% 1.12 0.90 80% D 0.79 217 217 8 0.62 0.50 80% D 0.79 217 217 1 0.62 0.50 80% D 0.79				317.5	316.6	141	0.69%	0.55	0.44	δU%	U	0.79			0.012	
211 217 3 316.6 315.2 132 1.00% 0.012 217 217 1 0.012 0.012 212 213 2 333.7 331.4 75 3.01% 0.08 0.06 80% D 0.79 213 217 6 331.4 320.8 523 2.03% 1.12 0.90 80% D 0.79 217 217 8 0.62 0.50 80% D 0.79 217 217 1 0.62 0.50 80% D 0.79				317.3	310.0	171	0.0770								0.012	2-2
212 213 2 333.7 331.4 75 3.01% 0.08 0.06 80% D 0.79 213 217 6 331.4 320.8 523 2.03% 1.12 0.90 80% D 0.79 217 217 8 0.62 0.50 80% D 0.79 217 217 1 0.62 0.50 80% D 0.79	211			316.6	315.2	132	1.00%								0.012	
213 217 6 331.4 320.8 523 2.03% 1.12 0.90 80% D 0.79 217 217 8 0.62 0.50 80% D 0.79 217 217 1 0.62 0.50 80% D 0.79																2-1
217 217 8 0.62 0.50 80% D 0.79 217 217 1 2-2 2-2																
217 217 1 2-2				აა1.4	320.8	DZ3	2.03%									
								0.02	0.00	5570	,	0.17				2-2

						CAR	LTON OAKS	/ PROPOSED	CONDITIONS						
								S INPUT DATA							
214	215	2	351.0	350.0	100	1.00%	0.15	0.08	50%	D	0.63			0.00	
215	216	5	350.0	330.0	228	8.77%	0.71	0.36	50%	D	0.63	16	1:20	0.030	2.1
216 216	216 216	7				A =	58.07	Tc =	21.43	Q =	80.00				2-1
216	216	1				Α-	30.07	-	21.43	Q -	00.00				2-2
216	217	3	326.9	315.2	551	2.11%								0.012	
217	217	8					2.03	1.02	50%	D	0.63				
217	217	11													11-2
217 217	217 218	12 3	207.7	204.0	202	0.000/								0.013	12-2
217	218	8	307.7	304.0	383	0.98%	0.38	0.36	95%	D	0.87			0.013	
218	218	11					0.00	0.00	7070		0.07				11-1
218	218	12													12-1
218	133	5	304.0	301.4	518	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
133	133	10	205	200	100	70/	0.07	0.11	500/		0.40				10-1
130 131	131 132	2 5	335 323.0	328 315.7	100 732	7% 1.0%	0.27 1.66	0.14	50% 50%	D D	0.63	2	1:10	0.015	
132	132	8	323.0	313.7	132	1.076	0.44	0.83	50%	D	0.63		1.10	0.015	
132	132	1					0	U.L.L	5570		0.00				2-1
132	132	7				A =	27.19	Tc =	9.91	Q =	73.41				
132	132	1													2-2
132	133	3	311.7	301.4	124	8.28%	0.01	0.00	050/	D.	0.07			0.013	
133	133 133	8 11					0.31	0.29	95%	D	0.87				11-1
133	133	12													12-1
133	128	5	301.4	299.9	311	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	
128	128	10													10-1
125	126	2	326	317	100	9%	0.13	0.13	100%	D	0.90				
126	127	5	317.0	313.6	336	1.0%	0.50	0.25	50%	D	0.63	2	1:10	0.015	
127 127	127 127	8					0.19	0.10	50%	D	0.63				2-1
127	127	7				A =	3.81	Tc =	10.22	Q =	10.53				2-1
127	127	1				-,	0.01	.0	10.22		10.00				2-2
127	128	3	309.6	299.9	146	6.70%								0.013	
128	128	8					0.48	0.24	50%	D	0.63				
128	128	11													11-1
128	128	12	200.0	207.5	(70	0.50/	0.00	0.00	00/	_	0.05	1/	1.00	0.000	12-1
128 113	113 113	5 10	299.9	296.5	678	0.5%	0.00	0.00	0%	D	0.35	16	1:20	0.030	10-1
110	111	2	324	321	85	4%	0.08	0.04	50%	В	0.58				10-1
111	112	5	321.0	315.0	291	2.1%	0.30	0.15	50%	В	0.58	2	1:10	0.015	
112	112	8					0.29	0.15	50%	В	0.58				
112	112	1						_		_					2-1
112	112	7				A =	54.44	Tc =	21.61	Q =	79.21				2-2
112 112	112 113	3	311.0	306.8	212	2.00%								0.012	2-2
113	113	11	311.0	300.0	212	2.0070								0.012	11-1
113	113	12													12-1
113	105	5	306.8	300.0	585	1.2%			0%	D	0.35	16	1:20	0.030	
105	105	8					0.42	0.40	95%	D	0.87				
105 105	105 20	<u>8</u> 5	300.0	295.1	974	0.5%	0.08	0.04	50% 0%	D D	0.63	16	1:20	0.030	
20	20	8	300.0	Z70.1	7/4	0.3%	0.32	0.30	95%	D	0.35	10	1.20	0.030	
20	20	8					0.17	0.16	95%	D	0.87				
20	20	1													2-1
100	101	2	324	322.5	85	2%	0.07	0.04	50%	D	0.63				
101	101.3	5	322.5	309.8	344	3.7%	0.65	0.33	50%	D	0.63	2	1:10	0.015	
101.3 102	103 103	3 8	309.0	305.0	248	1.61%	0.27	0.14	50%	D	0.63			0.012	
102	103	8					0.27	0.14	50%	D	0.63				
103	20	3	305.0	296.0	65	13.85%	3.00	J.12	30.3		3.00			0.012	
20	20	1													2-2
20	20	10											_		10-1
10	11	2	318.5	317.8	75	1.0%	0.10	0.07	65%	D	0.71				
11 12	12 15	6	317.8 307.9	311.9 306.8	406 108	1.4%	0.83	0.54	65%	D	0.71			0.012	
15	15	1	307.9	300.0	100	1.0%								0.012	2-1
13	14	2	318.4	317.7	75	1.0%	0.10	0.07	65%	D	0.71				
14	15	6	317.7	311.3	522	1.2%	1.43	0.93	65%	D	0.71				
15	15	1													2-2
15	16	3	306.8	301.5	66	8.0%	111	0.75	1501		0.71			0.012	
16 16	16 16	8 10					1.16	0.75	65%	D	0.71				10-1
17	18	2	331.5	326.5	100	5.00%	0.10	0.05	50%	D	0.63				10-1
18	19	5	315.0	306.0	385	2.34%	0.64	0.32	50%	D	0.63	1	1:01	0.015	
19	19	8					0.44	0.22	50%	D	0.63				

						CAR	LTON OAKS	/ PROPOSED	CONDITIONS						
							AE:	S INPUT DATA	١						
19	19	1													2-1
19	19	7				A =	327.74	Tc =	25.61	Q =	405.36				
19	19	1													2-2
19	16	3	307.0	301.5	726	0.8%								0.012	
16	16	11													11-1
16	16	12													12-1
16	20	3	294.9	296.0	137	-0.8%								0.012	
20	20	11													11-1
20	20	12													12-1
20	40	5	296.0	291.5	860	0.52%	0.00	0.00	0%	D	0.35	16	1:02	0.030	
40	40	10													10-1
30	31	2	318.4	317.7	75	1.0%	0.10	0.07	65%	D	0.71				
31	32	6	317.7	312.3	393	1.4%	1.25	0.81	65%	D	0.71				
32	35	3	308.3	305.7	265	1.0%								0.012	
35	35	1													2-1
33	34	2	318.5	317.8	75	1.0%	0.10	0.07	65%	D	0.71				
34	35	6	317.8	310.6	614	1.2%	1.16	0.75	65%	D	0.71				
35	35	8					0.68	0.44	65%	D	0.71				
35	35	1	005.7	0040	100	0.50/								0.040	2-2
35	36	3	305.7	304.8	180	0.5%	1.01	0.40			0.74			0.012	
36	36	8	2010	2011	0.4	0.50/	1.04	0.68	65%	D	0.71			0.040	
36	39	3	304.8	304.6	31	0.5%								0.012	0.1
39 37	39 38	1	317.5	315.7	75	2.3%	0.09	0.07	65%	D	0.71				2-1
38	38	6	317.5	310.6	508	1.0%	1.12	0.06	65%	D D	0.71				
38	39	1	313.1	310.0	300	1.0%	1.12	0.73	00%	U	0.71				2-2
39	40	3	297.2	296.0	116	1.0%								0.012	Z-Z
40	40	11	271.2	270.0	110	1.070								0.012	11-1
40	40	12													12-1
40	40	1													2-1
41	42	2	334.0	314.0	100	20.00%	0.13	0.07	50%	D	0.63				2-1
42	43	5	314.0	301.0	385	3.38%	0.13	0.07	50%	D	0.63	1	1:02	0.015	
43	40	3	301.0	300.5	100	0.5%	0.21	0.17	3070		0.00	'	1.02	0.013	
44	40	8	551.5	500.5	100	0.070	0.46	0.23	50%	D	0.63			0.010	
40	40	1					00	0.20	33,5		0.00				2-2
Total	10	,					523.11	35.55							

10-Year Proposed Condition Hydrology Model

Analysis was performed to obtain peak flows at node 218 for preliminary hydraulic calculations. SD line 5 profile is in Exhibit B were modeled with the 100-yr onsite and 10-yr in the river as well as the 10-yr onsite and 100-yr in the river.

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

FILE NAME: R:\1759\HYD\DR\CALCS\AES\10PR.DAT TIME/DATE OF STUDY: 17:07 01/30/2024
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.750 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 3 20.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 16.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 5 26.0 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 20.000000000000000000000000000000000
BEGINING OF ANALYSIS GOLF RESORT

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
*USER SPECIFIED(SUBAREA): COMMERCIAL AREA RUNOFF COEFFICIENT = .8200 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 324.50 DOWNSTREAM ELEVATION(FEET) = 323.50 ELEVATION DIFFERENCE(FEET) = 1.00

```
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3. 293
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.34
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 320.30
 STREET LENGTH(FEET) = 317.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 10.11
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.27
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75 STREET FLOW TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) =
                                               5.62
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.278
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 4.49
 TOTAL AREA(ACRES) = 1.4
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.11
 FLOW VELOCITY(FEET/SEC.) = 2.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                       302.00 =
*******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.278
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.12
TOTAL AREA(ACRES) = 1.7 TOTAL RUNOFF(CFS) = 5.0
 TC(MIN.) = 5.62
******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.30 DOWNSTREAM(FEET) = 314.90
 FLOW LENGTH(FEET) = 1091.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.88
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.93
 PIPE TRAVEL TIME(MIN.) = 6.31 Tc(MIN.) =
                                        11. 93
                                                  1468.00 FEET.
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                         303.00 =
```

```
FLOW PROCESS FROM NODE 264.00 TO NODE
                                      264.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.93
RAINFALL INTENSITY(INCH/HR) = 2.63
TOTAL STREAM AREA(ACRES) = 1.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   5.93
*************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
 UPSTREAM ELEVATION(FEET) = 324.50
 DOWNSTREAM ELEVATION(FEET) = 323.50
ELEVATION DIFFERENCE(FEET) = 1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.293
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.26
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 321.30
 STREET LENGTH(FEET) = 293.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) = 10.67
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) =
                                               5.70
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.235
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 4.55
TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 1.4
                                 PEAK FLOW RATE(CFS) =
                                                        4.79
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.86
 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) = 0.95
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 353.00 FEET.
 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 81
______
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section =
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.26
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 5.70 Tc(MIN.) =
                                             9.61
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.026
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.74
TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                     0.8
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.80
 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 315.00 TO NODE
                                      317.00 =
***********************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.026
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           9. 61
******************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.026
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7591
 SUBAREA AREA(ACRES) = 0.41 SUBAREA RUNOFF(CFS) = 0.51
TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) = 6.51
 TC(MIN.) =
           9. 61
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.61
 RAINFALL INTENSITY(INCH/HR) = 3.03
 TOTAL STREAM AREA(ACRES) = 2.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  6.34
*******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
                         322.00
 DOWNSTREAM ELEVATION(FEET) =
                         315.00
 ELEVATION DIFFERENCE(FEET) =
                          7.00
```

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =

```
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.740
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.218
 SUBAREA RUNOFF(CFS) = 0.10
 TOTAL AREA(ACRES) =
                   0.05 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 4 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.00 DOWNSTREAM ELEVATION(FEET) = 312.50
 STREET LENGTH(FEET) = 245.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWI DTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    1.15
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.89
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.50
 STREET FLOW TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.434
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.490
 SUBAREA AREA(ACRES) = 1.23
TOTAL AREA(ACRES) = 1.3
                               SUBAREA RUNOFF(CFS) = 2.07
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.32
 FLOW VELOCITY(FEET/SEC.) = 2.18 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68
 LONGEST FLOWPATH FROM NODE
                          320.00 TO NODE
                                          322.00 =
***********************
 FLOW PROCESS FROM NODE 322.00 TO NODE 264.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.90
RAINFALL INTENSITY(INCH/HR) = 3.43
 TOTAL STREAM AREA(ACRES) = 1.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    2.15
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                     Tc
                            INTENSITY
                                         AREA
 NUMBER
                    (MIN.) (INCH/HOUR)
                                         (ACRE)
           (CFS)
                          2. 631
4. 007
            5. 93 11. 93
                                           1.69
     1
            9. 52 6. 21
     2
                                           2.74
     3
            6.34
                 9. 61
                             3.026
                                           2.76
                   7. 90
            2. 15
                              3.434
                                           1.28
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 4 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                           INTENSITY
           (CFS)
                           (INCH/HOUR)
 NUMBER
                   (MIN.)
           18. 40 6. 21
                            4.007
    1
```

```
      19. 44
      7. 90
      3. 434

      20. 20
      9. 61
      3. 026

    2
    3
           19. 34
                  11. 93
    4
                            2.631
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 20.20 Tc(MIN.) =
                                         9.61
 TOTAL AREA(ACRES) =
                      8.5
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                        264.00 =
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 BEGINING OF ANALYSIS PA-2
********************
 FLOW PROCESS FROM NODE 250.00 TO NODE 251.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) =
                         346.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
                  0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 251.00 TO NODE
                                     252.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 327.60
 STREET LENGTH(FEET) = 634.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 2.37
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.92
 STREET FLOW TRAVEL TIME(MIN.) = 3.25 Tc(MIN.) =
                                              6.82
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.774
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.38
                             SUBAREA RUNOFF(CFS) = 4.11
 TOTAL AREA(ACRES) =
                       1.5
                                PEAK FLOW RATE(CFS) =
                                                       4.35
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.24
 FLOW VELOCITY(FEET/SEC.) = 3.73 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 252.00 = 699.00 FE
******************
 FLOW PROCESS FROM NODE 252.00 TO NODE 252.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.774
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 3.46
TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 7.8
 TC(MIN.) = 6.82
********************
 FLOW PROCESS FROM NODE 252.00 TO NODE 257.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 322.60 DOWNSTREAM(FEET) = 318.10
 FLOW LENGTH(FEET) = 447.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.68
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  7.81
 PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) =
                                      7.94
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                     257.00 =
 FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.94
 RAINFALL INTENSITY(INCH/HR) = 3.42
 TOTAL STREAM AREA(ACRES) = 2.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 253.00 TO NODE 254.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 331.30
                       330.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                          1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.28
                 0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 254.00 TO NODE 255.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 330.00 DOWNSTREAM ELEVATION(FEET) = 325.90
 STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 6.0
```

STREET HALFWIDTH(FEET) = 17.00

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   1.44
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.27
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61
 STREET FLOW TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) =
                                               6.08
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.066
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.760
 SUBAREA AREA(ACRES) = 0.75
                              SUBAREA RUNOFF(CFS) = 2.32
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
                      0.8
                                                         2.56
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.38
 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81 LONGEST FLOWPATH FROM NODE 253.00 TO NODE 255.00 = 359.00 FEET.
 FLOW PROCESS FROM NODE 255.00 TO NODE 255.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.066
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 1.21
 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 3.77
 TC(MIN.) =
********************
 FLOW PROCESS FROM NODE 255.00 TO NODE 256.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 320.90 DOWNSTREAM(FEET) = 318.50
 FLOW LENGTH(FEET) = 326.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.98
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 3.77
 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 253.00 TO NODE
                                         256.00 =
                                                    685.00 FEET.
***********************
 FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.655
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) =
                                                 5.56
 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) = 8.94
 TC(MIN.) = 7.17
```

```
FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.655
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 5.0 TOTAL RUNOFF(CFS) =
                                              14.00
 TC(MIN.) = 7.17
***********************
 FLOW PROCESS FROM NODE 256.00 TO NODE 257.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 318.50 DOWNSTREAM(FEET) = 318.10
 FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.94
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.00
 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) =
                                       7 39
 LONGEST FLOWPATH FROM NODE 253.00 TO NODE
                                      257.00 =
                                                763.00 FEET.
 FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 1
-----
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.39
 RAINFALL INTENSITY(INCH/HR) = 3.58
 TOTAL STREAM AREA(ACRES) = 5.04
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                14.00
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                   Tc
                         INTENSITY
                                      AREA
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
    1
           7.81
                  7. 94
                           3. 422
                                       2.62
                  7.39
    2
          14.00
                           3.585
                                       5.04
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF
               Tc
                         INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
          21. 27
                  7.39
                           3.585
                  7.94
    2
          21. 18
                           3.422
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 21.27 Tc(MIN.) = TOTAL ARFA(ACRES) = 7.7
                                       7.39
 TOTAL AREA(ACRES) =
                      7.7
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                      257.00 =
                                              1146.00 FEET.
*********************
 FLOW PROCESS FROM NODE 257.00 TO NODE 264.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 315.50 DOWNSTREAM(FEET) = 314.50
 FLOW LENGTH(FEET) = 96.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.55
```

10PR. OUT

```
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.27
                                       7.57
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 264.00 = 1242.00 FEET.
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.57
 RAINFALL INTENSITY(INCH/HR) = 3.53
TOTAL STREAM AREA(ACRES) = 7.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 21.27
***********************
 FLOW PROCESS FROM NODE 258.00 TO NODE 259.00 IS CODE = 21
 ------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 342.00
                         341.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                            1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.078
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 70.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TO CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.685
 SUBAREA RUNOFF(CFS) = 0.14
TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 259.00 TO NODE 260.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 341.00 DOWNSTREAM(FEET) = 323.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 574.00 CHANNEL SLOPE = 0.0314
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.031
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.82
 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 2.50
 Tc(MIN.) = 9.58
                            SUBAREA RUNOFF(CFS) = 1.50
 SUBAREA AREA(ACRES) = 0.90
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.555
 TOTAL AREA(ACRES) = 1.0
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 4.76
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 260.00 =
*********************
 FLOW PROCESS FROM NODE 260.00 TO NODE 264.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 314.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 151.00 CHANNEL SLOPE = 0.0596
```

CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000

```
10PR. OUT
```

```
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 1.62
 FLOW VELOCITY(FEET/SEC.) = 1.78 FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.99
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE
                                        264.00 =
                                                  825 OO FFFT
*****************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.99
 RAINFALL INTENSITY(INCH/HR) = 2.77
 TOTAL STREAM AREA(ACRES) = 0.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  1.62
**********************
 FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 349.50
 ELEVATION DIFFERENCE (FEET) = 2.00

URBAN SUBARFA OVER AND -
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 80.00
         (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TO CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.097
 SUBAREA RUNOFF(CFS) = 0.26
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
                                                0.26
*******************
 FLOW PROCESS FROM NODE 262.00 TO NODE 263.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 347.50 DOWNSTREAM ELEVATION(FEET) = 322.00
 STREET LENGTH(FEET) = 880.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  1.92
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.92
 STREET FLOW TRAVEL TIME(MIN.) = 4.51 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.855
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 SUBAREA AREA(ACRES) = 1.82
                             SUBAREA RUNOFF(CFS) = 3.27
                     1. 9
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                       3.45
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.22
 FLOW VELOCITY(FEET/SEC.) = 3.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 263.00 =
******************
 FLOW PROCESS FROM NODE 263.00 TO NODE 264.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.00 DOWNSTREAM(FEET) = 314.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 184.00 CHANNEL SLOPE = 0.0435
CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.45
 FLOW VELOCITY(FEET/SEC.) = 2.21 FLOW DEPTH(FEET) = 0.10
 TRAVEL TIME(MIN.) = 1.39 Tc(MIN.) = 11.90
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                        264.00 =
                                                1164.00 FEET.
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.90
RAINFALL INTENSITY(INCH/HR) = 2.64
 TOTAL STREAM AREA(ACRES) = 1.92
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  3.45
 ** CONFLUENCE DATA **
          RUNOFF
 STREAM
                    Tc
                          INTENSITY
                                       AREA
                   (MIN.)
 NUMBER
           (CFS)
                          (INCH/HOUR)
                                      (ACRF)
                         3. 527
           21. 27
                 7.57
                                         7.66
    1
                                        0.96
    2
           1. 62
                10. 99
                            2.774
    3
            3.45
                11. 90
                            2.636
                                         1.92
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF
                 Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
                7. 57
           24.58
    1
                            3. 527
                10. 99
    2
           21.53
                            2.774
    3
           20.88
                  11. 90
                            2.636
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 24.58 Tc(MIN.) = TOTAL AREA(ACRES) = 10.5
                                        7.57
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                        264.00 =
                                                1242. 00 FEET.
************************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
          RUNOFF TC INTENSITY
 STRFAM
                                     AREA
                                     (ACRE)
 NUMBER
           (CFS)
                  (MIN.)
                         (INCH/HOUR)
                            3. 527
           24.58
                  7.57
                                     10.54
 LONGEST FLOWPATH FROM NODE
                         250.00 TO NODE 264.00 = 1242.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
          RUNOFF TC INTENSITY
 STREAM
                                     AREA
          (CFS)
                         (INCH/HOUR)
 NUMBER
                  (MIN.)
                                     (ACRE)
           20.20
                  9.61
                            3.026
    1
```

10PR. OUT

```
300.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                    264. 00 = 1468. 00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
              (MI N. )
7. 57
 NUMBER
       (CFS)
                       (INCH/HOUR)
    1
         40.50
                           3. 527
    2
         41. 28
                  9. 61
                           3.026
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 41.28
                          Tc(MIN.) =
                    19.0
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
************************
 FLOW PROCESS FROM NODE 264.00 TO NODE 143.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 304.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2044.00 CHANNEL SLOPE = 0.0049
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 41.28
FLOW VELOCITY(FEET/SEC.) = 2.83 FLOW DEPTH(FEET) = 0.83
TRAVEL TIME(MIN.) = 12.05 Tc(MIN.) = 21.65
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 143.00 = 3512.00 FEET.
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 346.00
 DOWNSTREAM ELEVATION (FEET) = 344.70
 ELEVATION DIFFERENCE(FEET) =
                         1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
                  0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
****************
 FLOW PROCESS FROM NODE 201.00 TO NODE
                                 202.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 334.40
 STREET LENGTH(FEET) = 458.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   1.70
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75 STREET FLOW TRAVEL TIME(MIN.) = 2.70 Tc(MIN.) =
                                                6.27
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.984
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS)
                                                  2.80
                               PEAK FLOW RATE(CFS) =
                                                         3.05
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.15
 FLOW VELOCITY(FEET/SEC.) = 3.20 DEPTH*VELOCITY(FT*FT/SEC.) = 0.99
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 =
*********************
 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 330.40 DOWNSTREAM(FEET) = 328.70
 FLOW LENGTH(FEET) = 168.00 MANNING'S N = 0.012
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   3.05
 PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) =
                                          6.80
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                          203.00 =
******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.781
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 3.49
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 6.3
 TC(MIN.) = 6.80
***********
 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 328.70 DOWNSTREAM(FEET) = 326.70
 FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.43
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.39
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) =
                                         7. 31
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 =
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
```

```
*USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 337.40
                          334.50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                             2.90
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.18
 TOTAL AREA(ACRES) =
                     0.05 TOTAL RUNOFF(CFS) =
                                                 0.18
*******************
 FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 334.50 DOWNSTREAM ELEVATION(FEET) = 325.00
 STREET LENGTH(FEET) = 296.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01
 STREET FLOW TRAVEL TIME(MIN.) = 1.38 Tc(MIN.) =
                                               4.80
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.33 SUBAREA RUNOFF(CFS) = 4.84
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 1.4
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.48
 FLOW VELOCITY(FEET/SEC.) = 4.13 DEPTH*VELOCITY(FT*FT/SEC.) = 1.39 LONGEST FLOWPATH FROM NODE 206.00 TO NODE 208.00 = 381.00 FEET.
***********************
 FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 2.77
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 7.8
 TC(MIN.) = 4.80
*********************
 FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 319.40
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.14
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES = 1
               7. 80
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) =
                                     5. 19
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                     209.00 =
*******************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.502
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 5.19
************************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.502
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          5. 19
*******************
 FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 319.40 DOWNSTREAM(FEET) = 317.50
 FLOW LENGTH(FEET) = 382.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.73
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.34
 PIPE TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) =
                                    6.30
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE 210.00 =
                                             883.00 FEET.
***********************
 FLOW PROCESS FROM NODE 210.00 \text{ TO NODE} 210.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.973
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.22 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) =
                                           3.83
 TC(MIN.) =
          6.30
**********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.973
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 1.73
 TOTAL AREA(ACRES) = 5.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 6.30
***********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 317.50 DOWNSTREAM(FEET) = 316.60
 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.68
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.45
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) =
                                       6.65
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                       211.00 =
                                                1024.00 FEET.
*******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.65
RAINFALL INTENSITY(INCH/HR) = 3.84
 TOTAL STREAM AREA(ACRES) = 5.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
        RUNOFF
                  Tc
                         INTENSITY
 STREAM
                                      AREA
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)

    10. 66
    7. 99
    3. 408

    16. 45
    6. 65
    3. 836

                                        3.86
    1
    2
                                        5.24
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
          (CFS) (MIN.) (INCH/HOUR)
                        3. 836
          25. 32 6. 65
    1
          25. 27
                 7. 99
    2
                           3.408
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 25.32 Tc(MIN.) =
                                       6, 65
 TOTAL AREA(ACRES) =
                      9. 1
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                       211.00 =
                                               1293.00 FEET.
*******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 217.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.60 DOWNSTREAM(FEET) = 315.20
 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.10
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 25.32
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
                                      6.89
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 217.00 = 1425.00 FEET.
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.89
 RAINFALL INTENSITY(INCH/HR) = 3.75
 TOTAL STREAM AREA(ACRES) = 9.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                25.32
*******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) =
                        333.70
                        331.40
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
                                            0. 29
******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 217.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 331.40 DOWNSTREAM ELEVATION(FEET) = 320.80
 STREET LENGTH(FEET) = 523.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               2.04
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) = 7.82
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.80
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.79
 STREET FLOW TRAVEL TIME(MIN.) = 3.11 Tc(MIN.) =
                                            6.44
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.12
                            SUBAREA RUNOFF(CFS) =
                                              3. 46
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
                                                    3.71
                     1. 2
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.16
 FLOW VELOCITY(FEET/SEC.) = 3.22 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                     217.00 =
                                               598.00 FEET.
***********************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916
```

*USER SPECIFIED(SUBAREA):

```
DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.62 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                 1.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           6.44
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE =
 ______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.44
 RAINFALL INTENSITY(INCH/HR) = 3.92
 TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                5.63
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                     AREA
 NUMBER
         (CFS)
                  (MIN.) (INCH/HOUR)
                                    (ACRE)
                  6. 89 3. 749
          25. 32
                                      9.10
    1
    2
          5.63
               6. 44
                           3.916
                                      1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
          29. 87 6. 44
30. 71 6. 89
    1
                          3.916
    2
                          3.749
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 30.71 Tc(MIN.) = TOTAL AREA(ACRES) = 10.9
                                     6.89
 LONGEST FLOWPATH FROM NODE
                       200.00 TO NODE
                                      217.00 =
                                             1425, 00 FFFT.
******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
______
 FLOW PROCESS FROM NODE 214.00 TO NODE 215.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
                         350.00
 ELEVATION DIFFERENCE(FEET) =
                          1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
                                   70 00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TO CALCULATION!
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.685
 SUBAREA RUNOFF(CFS) = 0.35
                  0.15 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
***********************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
```

```
10PR. OUT
```

```
ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) =
                                                     330.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 228.00 CHANNEL SLOPE = 0.0877
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.477
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            1. 13
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.70
AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 0.67
 Tc(MIN.) = 7.75
 SUBAREA AREA(ACRES) = 0.71
                             SUBAREA RUNOFF(CFS) = 1.56
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.9
                               PEAK FLOW RATE(CFS) =
                                                     1.88
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 6.98
 LONGEST FLOWPATH FROM NODE 214.00 TO NODE 216.00 =
*********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.75
 RAINFALL INTENSITY(INCH/HR) =
                         3.48
 TOTAL STREAM AREA(ACRES) = 0.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 1.88
*********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 22.22 RAIN INTENSITY(INCH/HOUR) = 1.76
 TOTAL AREA(ACRES) = 58.07 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.22
 RAINFALL INTENSITY(INCH/HR) = 1.76
 TOTAL STREAM AREA(ACRES) = 58.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 48.88
 ** CONFLUENCE DATA **
                   Tc
       RUNOFF
                          INTENSITY
 STREAM
                                      AREA
                   (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
                                      (ACRE)
                  7.75
           1.88
                            3.477
                                        0.86
    1
                 22. 22
    2
           48.88
                            1.762
                                       58.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
    1
          18. 92
                  7.75
                           3.477
    2
          49.83
                22. 22
                          1. 762
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.83 Tc(MIN.) =
                                       22.22
 TOTAL AREA(ACRES) =
                     58.9
```

```
LONGEST FLOWPATH FROM NODE
                       212.00 TO NODE
                                    216. 00 =
                                             598.00 FEET.
******************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 326.90 DOWNSTREAM(FEET) = 315.20
 FLOW LENGTH(FEET) = 551.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.03
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               49. 83
 PIPE TRAVEL TIME(MIN.) = 0.70
                          Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                    217.00 =
                                           1149.00 FEET.
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.727
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4850
 SUBAREA AREA(ACRES) = 2.03 SUBAREA RUNOFF(CFS) =
                                           2.21
 TOTAL AREA(ACRES) =
                   61.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 22.92
******************
 FLOW PROCESS FROM NODE
                    217. 00 TO NODE
                                 217.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
** MAIN STREAM CONFLUENCE DATA **
 STRFAM
         RUNOFF
                                  AREA
                Tc.
                      INTENSITY
          (CFS)
 NUMBER
                (MIN.)
                       (INCH/HOUR)
                                 (ACRE)
          51.05
               22. 92
                       1. 727
                                  60.96
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 217.00 = 1149.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
         RUNOFF
 STREAM
                 Tc
                       INTENSITY
                                  AREA
 NUMBER
          (CFS)
                (MIN.)
                       (INCH/HOUR)
                                 (ACRE)
          30.71
                 6.89
                                 10.92
                        3. 749
 LONGEST FLOWPATH FROM NODE
                       200.00 TO NODE 217.00 = 1425.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF
 STREAM
              Tc
                       INTENSITY
 NUMBER
        (CFS)
                (MIN.)
                       (INCH/HOUR)
         46.06
    1
                 6.89
                          3.749
    2
         65.20
                 22.92
                          1.727
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 65.20
                          Tc(MIN.) =
                                    22.92
 TOTAL AREA(ACRES) =
                    71.9
************************
 FLOW PROCESS FROM NODE 217.00 TO NODE
                                 217.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
 FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
 -----
 ELEVATION DATA: UPSTREAM(FEET) = 307.70 DOWNSTREAM(FEET) = 304.00
```

```
FLOW LENGTH(FEET) = 383.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.41
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 65.20
 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) =
                                    23. 54
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                    218.00 =
                                             1808.00 FEET.
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.698
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5331
 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 72.3 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 23.54
************************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
       RUNOFF Tc
 STREAM
                       INTENSITY
                                  AREA
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
               23.54
   1
          65.39
                       1. 698
                                  72.26
                       200.00 TO NODE 218.00 = 1808.00 FEET.
 LONGEST FLOWPATH FROM NODE
 ** MEMORY BANK # 1 CONFLUENCE DATA **
       RUNOFF TC INTENSITY
 STREAM
                                  AREA
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
         41. 28
                       1. 791
   1
                21.65
                                 19. 01
 LONGEST FLOWPATH FROM NODE
                       300.00 TO NODE 218.00 = 3512.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
                       INTENSITY
 STREAM
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR)
               21.65
    1
        101.44
                          1. 791
                 23.54
    2
        104.51
                          1.698
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 104.51 Tc(MIN.) = 23.54
 TOTAL AREA(ACRES) =
                    91.3
*******************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
********************
 FLOW PROCESS FROM NODE 218.00 TO NODE 133.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 301.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 518.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 104.51
 FLOW VELOCITY(FEET/SEC.) = 3.94 FLOW DEPTH(FEET) = 1.41 TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) = 25.73
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 133.00 = 4030.00 FEET.
```

10PR. OUT

Outfall of SD Line #5

FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 10 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< _____ ****************** FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ______ *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 335.00 DOWNSTREAM ELEVATION(FEET) = 328.00 ELEVATION DIFFERENCE(FEET) = 7.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.423 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.78TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = ************************ FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 51 ----->>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> ______ ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 315.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 732.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.521 *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.85 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 3.17 Tc(MIN.) =7.59 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 3.68AREA-AVERAGE RUNOFF COEFFICIENT = 0.630 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 4.28 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.40 FLOW VELOCITY(FEET/SEC.) = 4.47 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = ************************ FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.521 *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.4 TOTAL RUNOFF(CFS) = TC(MIN.) = 7.59********************* FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.59RAINFALL INTENSITY(INCH/HR) = 3.52TOTAL STREAM AREA(ACRES) = 2.37 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.26

```
FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE =
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 9.91 RAIN INTENSITY(INCH/HOUR) = 2.97
 TOTAL AREA(ACRES) = 27.19 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.91
 RAINFALL INTENSITY(INCH/HR) = 2.97
 TOTAL STREAM AREA(ACRES) = 27.19
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              73.41
 ** CONFLUENCE DATA **
 STREAM
       RUNOFF
                 Tc
                       INTENSITY
                                   AREA
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
                                   (ACRE)
          5. 26
                                    2.37
                 7. 59 3. 521
    1
          73.41
                 9. 91
                          2.966
                                    27.19
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR)
         61. 51 7. 59
77. 84 9. 91
                      3. 521
    1
    2
                         2.966
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 77.84 Tc(MIN.) = TOTAL AREA(ACRES) = 29.6
                                    9. 91
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   132.00 =
************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.40 DOWNSTREAM(FEET) = 301.40
 FLOW LENGTH(FEET) = 124.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.76
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 77.84
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.01
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 =
                                              956.00 FEET.
********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.946
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8877
 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) =
                                           0.79
 TOTAL AREA(ACRES) =
                   29.9 TOTAL RUNOFF(CFS) =
                                           78. 11
 TC(MIN.) = 10.01
```

```
FLOW PROCESS FROM NODE 133.00 TO NODE
                                 133.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
       RUNOFF
 STRFAM
                 Tc
                        INTENSITY
                                  AREA
 NUMBER
          (CFS)
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
          78.11
                 10.01
                          2.946
                                   29.87
 LONGEST FLOWPATH FROM NODE
                       130.00 TO NODE 133.00 =
                                              956.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
        RUNOFF
                        INTENSITY
                                  AREA
                 Tc
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
                25.73
         104.51
                                  91.27
    1
                         1.603
 LONGEST FLOWPATH FROM NODE
                       300.00 TO NODE 133.00 =
                                            4030.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF
              Tc
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
    1
        118.79
                 10. 01
                           2.946
    2
        147.01
                 25. 73
                           1.603
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 147.01 Tc(MIN.) =
                                     25.73
 TOTAL AREA(ACRES) =
                    121.1
*******************
 FLOW PROCESS FROM NODE
                   133.00 TO NODE
                                 133.00 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 128.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.40 DOWNSTREAM(FEET) = 299.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 311.00 CHANNEL SLOPE = 0.0051
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 147.01
 FLOW VELOCITY(FEET/SEC.) = 4.44 FLOW DEPTH(FEET) = 1.70
 TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 26.89
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                     128.00 =
                                              4341.00 FEET.
******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .9000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                          9.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.54
 TOTAL AREA(ACRES) =
                   0.13 TOTAL RUNOFF(CFS) =
                                           0.54
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 317.00 DOWNSTREAM(FEET) = 313.60
 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0101
CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.98
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 1.88
 Tc(MIN.) =
           3.61
 SUBAREA AREA(ACRES) = 0.50
                           SUBAREA RUNOFF(CFS) = 1.45
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.686
 TOTAL AREA(ACRES) =
                    0.6
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 3.47
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 =
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6728
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
                                          0.55
 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           3.61
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 3.61 RAINFALL INTENSITY(INCH/HR) = 4.61
 TOTAL STREAM AREA(ACRES) =
                       0.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               2.54
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 10.22 RAIN INTENSITY(INCH/HOUR) = 2.91
 TOTAL AREA(ACRES) = 3.81 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.22
```

```
PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                10.53
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                    Tc
                          INTENSITY
                                      AREA
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                     (ACRE)
    1
           2.54
                  3.61
                            4.611
                                       0.82
    2
          10.53
                 10.22
                            2.907
                                        3.81
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                         INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                         (INCH/HOUR)
    1
           6.26
                           4.611
                  3.61
                10. 22
          12. 13
                           2.907
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 12.13 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                     4.6
 LONGEST FLOWPATH FROM NODE
                        212.00 TO NODE 127.00 =
                                                598. 00 FEET.
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 299.80
 FLOW LENGTH(FEET) = 146.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.38
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.13
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) =
                                      10.39
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                       128.00 =
                                                744.00 FEET.
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.877
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8759
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 5.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
*******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 11
_____
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF TC INTENSITY
                                    AREA
 NUMBER
          (CFS)
                  (MI N.)
                       (INCH/HOUR)
                                    (ACRE)
          12.88
                10. 39
                          2.877
                                     5. 11
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 128.00 =
                                                 744.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF
                 Tc
                        INTENSITY
 STREAM
                                    AREA
 NUMBER
          (CFS)
                  (MIN.)
                        (INCH/HOUR)
                                    (ACRE)
          147.01
                26.89
                         1. 558
                                   121. 14
 LONGEST FLOWPATH FROM NODE
                         300.00 TO NODE
                                      128.00 =
                                                4341.00 FEET.
```

RAINFALL INTENSITY (INCH/HR) = 2.91TOTAL STREAM AREA(ACRES) =

3.81

```
** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                        INTENSITY
        (CFS) (MI N.)
69.67 10.39
153.98 26.89
 NUMBER
                       (INCH/HOUR)
    1
                         2. 877
    2
                            1.558
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 153.98 Tc(MIN.) = 26.89
 TOTAL AREA(ACRES) =
                    126.2
*********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*****************
 FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 299.80 DOWNSTREAM(FEET) = 296.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 678.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 153.98
FLOW VELOCITY(FEET/SEC.) = 4.47 FLOW DEPTH(FEET) = 1.77
TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 29.42
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 113.00 = 5019.00 FEET.
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
                         321.00
 ELEVATION DIFFERENCE(FEET) =
                          3.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.668
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.253
 SUBAREA RUNOFF (CFS) = 0.20
 TOTAL AREA(ACRES) =
                   0.08 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 321.00 DOWNSTREAM(FEET) = 315.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 291.00 CHANNEL SLOPE = 0.0206
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.570
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.75
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 1.77
 Tc(MIN.) = 7.43
 SUBAREA AREA(ACRES) = 0.30
                             SUBAREA RUNOFF(CFS) = 0.62
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.580
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    0. 4
                                                 0.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 3.17
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 =
                                              376, 00 FEET.
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.570
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5800
 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.43
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
-----
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.43
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.67
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               1.39
*********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 21.61 RAIN INTENSITY(INCH/HOUR) = 1.79
 TOTAL AREA(ACRES) = 54.44 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.61
 RAINFALL INTENSITY (INCH/HR) = 1.79
 TOTAL STREAM AREA(ACRES) = 54.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                        INTENSITY
                  Tc
                                    AREA
 NUMBER
                 (MI N.)
          (CFS)
                        (INCH/HOUR)
                                   (ACRE)
    1
          1.39
                 7.43
                          3.570
                                     0.67
          79. 21
                          1.794
    2
                21.61
                                    54.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
              Tc
                       INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                       (INCH/HOUR)
    1
          28.63
                7.43
                         3.570
    2
          79. 91
                21.61
                         1.794
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 79.91 Tc(MIN.) =
                                    21.61
```

```
TOTAL AREA(ACRES) = 55.1
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                      112.00 =
                                                598.00 FEET.
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE
                                   113.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 311.00 DOWNSTREAM(FEET) = 306.80
 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.25
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 79.91
 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) =
                                      21.86
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                      113.00 =
                                                810.00 FFFT.
***********************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF TC INTENSITY
 STREAM
                                   AREA
                 (MIN.)
 NUMBER
          (CFS)
                       (INCH/HOUR)
                                   (ACRE)
               21.86
          79. 91
    1
                        1. 781
                                    55.11
 LONGEST FLOWPATH FROM NODE
                        212.00 TO NODE 113.00 = 810.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF
 STREAM
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
               29.42
    1
          153. 98
                        1. 470
                                   126. 25
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE 113.00 = 5019.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STRFAM
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                       (INCH/HOUR)
               21. 86
29. 42
    1
         194.30
                           1. 781
         219.95
                           1. 470
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 219.95
                           Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    181.4
*************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 105.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 306.80 DOWNSTREAM(FEET) = 300.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 585.00 CHANNEL SLOPE = 0.0116
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 219.95
 FLOW VELOCITY(FEET/SEC.) = 6.68 FLOW DEPTH(FEET) = 1.70
 TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 30.88
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 105.00 =
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
```

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.425
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7065
 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 181.8 TOTAL RUNOFF(CFS) =
                                             0.52
 TC(MIN.) = 30.88
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.425
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7064
 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 181.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           30.88
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
******************
 FLOW PROCESS FROM NODE 105.00 TO NODE
                                   20.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 300.00 DOWNSTREAM(FEET) = 295.10
 CHANNEL LENGTH THRU SUBAREA(FEET) = 974.00 CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 219.95
 FLOW VELOCITY(FEET/SEC.) = 5.02 FLOW DEPTH(FEET) = 2.16
TRAVEL TIME(MIN.) = 3.23 Tc(MIN.) = 34.12
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      20.00 = 6578.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.336
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7067
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) =
                                             0.37
 TOTAL AREA(ACRES) = 182.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 34.12
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.336
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7069
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 182.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 34.12
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
```

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 34.12
 RAINFALL INTENSITY (INCH/HR) = 1.34
 TOTAL STREAM AREA(ACRES) = 182.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                219.95
*******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
 UPSTREAM ELEVATION(FEET) = 324.00
 DOWNSTREAM ELEVATION(FEET) = 322.50
ELEVATION DIFFERENCE(FEET) = 1.50
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.026
 SUBAREA RUNOFF (CFS) = 0.18
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 101.00 TO NODE
                                    101.30 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.50 DOWNSTREAM(FEET) = 309.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 344.00 CHANNEL SLOPE = 0.0369
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.532
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.13
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 1.39
 Tc(MIN.) =
           7.56
 SUBAREA AREA(ACRES) = 0.65
                             SUBAREA RUNOFF(CFS) = 1.45
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                     0. 7
                                                     1. 60
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 4.98
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 101.30 =
*******************
 FLOW PROCESS FROM NODE 101.30 TO NODE 103.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.00 DOWNSTREAM(FEET) = 305.00
 FLOW LENGTH(FEET) = 248.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.91
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.60
 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) =
                                      8.40
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 =
                                                677. 00 FEET.
*********************
```

FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.300
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          8.40
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
------
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.300
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 1.73
 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 8.40
******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 218.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.42
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.78
 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) =
                                       8.83
 LONGEST FLOWPATH FROM NODE
                       100.00 TO NODE
                                       20.00 =
                                                895, 00 FEET.
******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.83
 RAINFALL INTENSITY(INCH/HR) = 3.19
TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 3.78
 ** CONFLUENCE DATA **
        RUNOFF
 STREAM
                   Tc
                          INTENSITY
                                      AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
          219.95
                           1.336
                 34. 12
                                      182.35
    1
    2
           3.78
                 8.83
                            3.195
                                       1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF Tc
                         INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                         (INCH/HOUR)
    1
          60.71
                  8.83
                           3.195
          221.53
                34. 12
                           1.336
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 221.53 Tc(MIN.) =
                                       34. 12
 TOTAL AREA(ACRES) =
                    184. 2
```

Page 35

LONGEST FLOWPATH FROM NODE 10.00 TO NODE

12.00 = Page 36

481.00 FEET.

```
FLOW PROCESS FROM NODE 12.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 308.60 FLOW LENGTH(FEET) = 108.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.61
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                2. 12
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                       15.00 =
**********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.15
 RAINFALL INTENSITY(INCH/HR) = 3.12
 TOTAL STREAM AREA(ACRES) = 0.93
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 2.12
***********************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 318.40
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                            0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.236
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 311.30
 STREET LENGTH(FEET) = 522.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                1.81
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
```

```
HALFSTREET FLOOD WIDTH(FEET) = 5.84
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.48
 STREET FLOW TRAVEL TIME(MIN.) = 4.42 Tc(MIN.) =
                                             10.12
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.926
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.43 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.5 DEAK FLOW PATE(CFS)
 TOTAL AREA(ACRES) =
                     1.5
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.82
 FLOW VELOCITY(FEET/SEC.) = 2.18 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                      15.00 = 597.00 FEET.
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.12
 RAINFALL INTENSITY(INCH/HR) = 2.93
 TOTAL STREAM AREA(ACRES) = 1.53
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  3.18
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                   Tc
                          INTENSITY
                                       AREA
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)
                 9. 15 3. 123
            2.12
                                        0.93
    1
    2
            3. 18
                  10.12
                            2.926
                                         1.53
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
    1
           4.99
                 9. 15
                            3. 123
           5. 17
                10. 12
                            2.926
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.17 Tc(MIN.) = 10.12
 TOTAL AREA(ACRES) =
                      2.5
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                       15.00 =
                                                 597.00 FEET.
******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 308.60 DOWNSTREAM(FEET) = 303.30
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.88
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.17
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
                                        10.21
                                        16.00 =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
***********************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.910

```
*USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.40
TOTAL AREA(ACRES) = 3.6 TOTAL RUNOFF(CFS) = 7.48
 TC(MIN.) =
          10. 21
******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 10
  ______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
______
******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 331.50
 DOWNSTREAM ELEVATION(FEET) = 326.50
 ELEVATION DIFFERENCE(FEET) =
                          5.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.948
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 18.00 TO NODE
                                 19.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 306.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 385.00 CHANNEL SLOPE = 0.0234
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.936
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.45
 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.44
 Tc(MIN.) =
          6.39
 SUBAREA AREA(ACRES) = 0.64
                          SUBAREA RUNOFF(CFS) = 1.59
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) =
                0. 7
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) = 5.18
 LONGEST FLOWPATH FROM NODE 17.00 TO NODE
                                    19.00 =
                                              485.00 FEET.
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.936
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 1.09
 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 2.93
 TC(MIN.) = 6.39
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 1
______
```

```
** MAIN STREAM CONFLUENCE DATA **
         RUNOFF Tc
                       INTENSITY
                                   AREA
 STRFAM
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
                                   (ACRE)
         240.02
                 28. 03
                      1.517
13.00 TO NODE
                        1. 517
                                  328.92
   1
 LONGEST FLOWPATH FROM NODE
                                             1323. 00 FEET.
                                    16.00 =
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM
        RUNOFF
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
                 10. 21
   1
           7.48
                         2. 910
                                    3.62
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                     16.00 =
                                               663.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
         94.86
                 10. 21
                        2. 910
                 28.03
    2
        243.92
                           1.517
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 243.92 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                   332. 5
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 2 <<<<
_____
 FLOW PROCESS FROM NODE 16.00 TO NODE 20.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.70 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 66.0 INCH PIPE IS 53.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
 ESTIMATED PIPE DIAMETER(INCH) = 66.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 243.92
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                       13.00 TO NODE
                                      20.00 = 1460.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                   20.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF
 STRFAM
               Tc
                       INTENSITY
                                   AREA
                       (I NCH/HOUR)
 NUMBER
          (CFS)
                 (MIN.)
                                   (ACRE)
    1
         243.92
                 28. 23
                         1. 510
                                  332.54
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                     20.00 = 1460.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
       RUNOFF
                 Tc
 STREAM
                        INTENSITY
                                   AREA
                                   (ACRE)
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
         221.53
                 34. 12
                                  184.17
    1
                         1. 336
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE
                                      20.00 =
                                             6578.00 FEET.
 ** PEAK FLOW RATE TABLE **
              Tc
 STREAM
        RUNOFF
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
        427.21
                 28. 23
                           1.510
    2
        437.39
                 34. 12
                           1. 336
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 437.39 Tc(MIN.) =
                                     34. 12
 TOTAL AREA(ACRES) =
                    516.7
```

```
20.00 IS CODE = 12
 FLOW PROCESS FROM NODE 20.00 TO NODE
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 40.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.00 DOWNSTREAM(FEET) = 291.50
 CHANNEL LENGTH THRU SUBAREA (FEET) = 859.50 CHANNEL SLOPE = 0.0052
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 437.39
 FLOW VELOCITY(FEET/SEC.) = 6.29 FLOW DEPTH(FEET) = 3.13 TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) = 36.39
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                     40.00 = 7437.50 FEET.
***********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
 FLOW PROCESS FROM NODE
                    30.00 TO NODE 31.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
-----
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 318.40
 DOWNSTREAM ELEVATION(FEET) =
                       317. 70
 ELEVATION DIFFERENCE(FEET) =
                          0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.236
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 312.30
 STREET LENGTH(FEET) = 393.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section =
  **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                             1.77
  STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.29
  HALFSTREET FLOOD WIDTH(FEET) =
                          7. 98
```

```
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67
 STREET FLOW TRAVEL TIME(MIN.) = 2.79 Tc(MIN.) =
                                            8.49
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.276
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA (ACRES) = 1.25 SUBAREA RUNOFF (CFS) =
                                              2. 91
 TOTAL AREA(ACRES) = 1.4
                            PEAK FLOW RATE(CFS) =
                                                    3.14
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.32
 FLOW VELOCITY(FEET/SEC.) = 2.65 DEPTH*VELOCITY(FT*FT/SEC.) = 0.88 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 468.00 FE
                                      32.00 = 468.00 FEET.
*******************
 FLOW PROCESS FROM NODE 32.00 TO NODE 35.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.60 DOWNSTREAM(FEET) = 305.00
 FLOW LENGTH(FEET) = 265.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.26
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.14
 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) =
                                       9.33
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                       35.00 =
*******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 1
  _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.33
 RAINFALL INTENSITY(INCH/HR) = 3.08
 TOTAL STREAM AREA(ACRES) = 1.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 318.50
 DOWNSTREAM ELEVATION (FEET) = 317.80
ELEVATION DIFFERENCE (FEET) = 0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 63.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.236
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
**********************
 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.80 DOWNSTREAM ELEVATION(FEET) = 310.60
```

STREET LENGTH(FEET) = 614.00 CURB HEIGHT(INCHES) = 6.0

```
STREET HALFWIDTH(FEET) = 17.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.81 Tc(MIN.) =
                                              10.52
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.854
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.16
                              SUBAREA RUNOFF(CFS) = 2.35
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                        2.55
                    1. 3
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.70
 FLOW VELOCITY(FEET/SEC.) = 2.41 DEPTH*VELOCITY(FT*FT/SEC.) = 0.77
 LONGEST FLOWPATH FROM NODE
                        33.00 TO NODE
                                        35.00 =
                                                 689. 00 FEET.
******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.854
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.52
***********************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.52
RAINFALL INTENSITY(INCH/HR) = 2.85
 TOTAL STREAM AREA(ACRES) = 1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   3.93
 ** CONFLUENCE DATA **
       RUNOFF
 STREAM
                    Tc
                           INTENSITY
                                        AREA
 NUMBER
                    (MIN.)
                           (INCH/HOUR)
                                        (ACRE)
           (CFS)
                                          1.35
            3.14
                   9.33
                             3.083
    1
            3.93
    2
                   10.52
                             2.854
                                          1.94
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                          INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                          (INCH/HOUR)
            6.63
                  9. 33
                            3.083
    1
    2
            6.84
                  10.52
                             2.854
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.84 Tc(MIN.) = TOTAL AREA(ACRES) = 3.3
                                      10.52
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      35.00 =
                                                733.00 FEET.
**************************
 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 304.10
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.89
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.84
 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) = 11.13
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      36.00 =
                                                913.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                     36.00 TO NODE
                                  36.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.752
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 1.04 SUBAREA RUNOFF(CFS) = 2.03
TOTAL AREA(ACRES) = 4.3 TOTAL RUNOFF(CFS) = 8.46
 TC(MIN.) = 11.13
 FLOW PROCESS FROM NODE 36.00 TO NODE 39.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.10 DOWNSTREAM(FEET) = 303.90
 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.60
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.46
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 11.22
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                     39.00 =
                                               944.00 FEET.
******************
 FLOW PROCESS FROM NODE 39.00 TO NODE
                                   39.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.22
 RAINFALL INTENSITY(INCH/HR) = 2.74
 TOTAL STREAM AREA(ACRES) = 4.33
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                8.46
*******************
 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 317.50
 DOWNSTREAM ELEVATION(FEET) =
                        315.70
 ELEVATION DIFFERENCE(FEET) =
```

```
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
 TOTAL AREA(ACRES) =
                    0.09 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 38.00 TO NODE
                                       39.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.70 DOWNSTREAM ELEVATION(FEET) = 310.60
 STREET LENGTH(FEET) = 508.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.02
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.59 STREET FLOW TRAVEL TIME(MIN.) = 4.19 Tc(MIN.) =
                                                8.73
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.218
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.12
                              SUBAREA RUNOFF(CFS) =
                                                    2.56
 TOTAL AREA(ACRES) =
                      1. 2
                                 PEAK FLOW RATE(CFS) =
                                                         2.76
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.40
 FLOW VELOCITY(FEET/SEC.) = 2.31 DEPTH*VELOCITY(FT*FT/SEC.) = 0.77
 LONGEST FLOWPATH FROM NODE
                           37.00 TO NODE
                                          39.00 =
                                                    583.00 FEET.
********************
 FLOW PROCESS FROM NODE 39.00 TO NODE
                                       39.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.73
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    2.76
 ** CONFLUENCE DATA **
 STREAM
          RUNOFF
                            INTENSITY
                                         AREA
                     Tc
 NUMBER
           (CFS)
                    (MIN.)
                           (INCH/HOUR)
                                        (ACRE)
    1
            8.46
                   11. 22
                              2.737
                                           4.33
    2
            2.76
                   8.73
                              3.218
                                           1.21
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
          RUNOFF Tc
 STREAM
                           INTENSITY
           (CFS)
 NUMBER
                   (MIN.)
                           (INCH/HOUR)
           9. 96
                  8. 73
                             3. 218
    1
                             2.737
    2
           10. 81
                   11. 22
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 10.81 Tc(MIN.) = TOTAL AREA(ACRES) = 5.5
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                     39.00 =
                                              944.00 FEET.
*******************
 FLOW PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.50 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 116.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.27
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.81
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 11.59
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                     40.00 =
***********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY
_____
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
        (CFS)
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 10.81 11.59 2.681 5.54

LONGEST FLOWPATH FROM NODE 30.00 TO NODE 40.00 = 1060.00 FEET.
 NUMBER
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
         (CFS)
 NUMBER
                 (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
         437. 39 36. 39
   1
                       1. 282 516. 71
 LONGEST FLOWPATH FROM NODE
                       300.00 TO NODE 40.00 = 7437.50 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
1 150.08 11.59
2 442.56 36.39
                       INTENSITY
                       (INCH/HOUR)
                        2. 681
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 442.56 Tc (MIN.) = 36.39
 TOTAL AREA(ACRES) =
                    522.2
*******************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 36.39
 RAINFALL INTENSITY(INCH/HR) = 1.28
 TOTAL STREAM AREA(ACRES) = 522.25
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              442.56
 FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 21
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

```
*USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 334.00
 DOWNSTREAM ELEVATION(FEET) = 314.00
 ELEVATION DIFFERENCE(FEET) =
                            20.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3.927
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.611
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.38
 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 301.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 521.00 CHANNEL SLOPE = 0.0250
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.851
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.23
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 2.68
 Tc(MIN.) = 6.61
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.65
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.4
                             PEAK FLOW RATE(CFS) = 0.97
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 3.66
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE
                                        43.00 =
******************
 FLOW PROCESS FROM NODE 43.00 TO NODE 40.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.00 DOWNSTREAM(FEET) = 300.50
 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.80
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.97
PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 41.00 TO NODE
                                         40.00 =
*******************
 FLOW PROCESS FROM NODE 44.00 TO NODE 40.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.642
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.06
TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 1.97
 TC(MIN.) = 7.21
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1
```

Page 48

```
>>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<<
```

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 7.21 RAINFALL INTENSITY(INCH/HR) = 3.64

TOTAL STREAM AREA(ACRES) = 0.86

PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.97

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MI N.)	(INCH/HOUR)	(ACRE)
1	442. 56	36. 39	1. 282	522. 25
2	1. 97	7. 21	3.642	0.86

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	89. 60	7. 21	3. 642
2	443. 25	36. 39	1. 282

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 443.25 Tc(MIN.) = 36.39 TOTAL AREA(ACRES) = 523.1

LONGEST FLOWPATH FROM NODE 300.00 TO NODE 40.00 = 7437.50 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 523.1 PEAK FLOW RATE(CFS) = 443.25 523.1 TC(MIN.) = 36.39

______ ______

END OF RATIONAL METHOD ANALYSIS

25-Year Proposed Condition Hydrology Model

Analysis was performed to obtain peak flows at node 20 for preliminary hydraulic calculations. SD line 1 profile in Exhibit B were modeled with the 100-yr onsite and 25-yr in the river as well as the 25-yr onsite and 100-yr in the river.

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

FILE NAME: R:\1759\HYD\DR\CALCS\AES\25\25PR.DAT TIME/DATE OF STUDY: 17:14 01/30/2024						
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:						
2003 SAN DIEGO MANUAL CRITERIA						
USER SPECIFIED STORM EVENT(YEAR) = 25.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)						
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 3 20.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 16.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 5 26.0 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 20.000000000000000000000000000000000						
BEGINING OF ANALYSIS GOLF RESORT						
++						

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<						
*USER SPECIFIED(SUBAREA): COMMERCIAL AREA RUNOFF COEFFICIENT = .8200 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 324.50 DOWNSTREAM ELEVATION(FEET) = 323.50 ELEVATION DIFFERENCE(FEET) = 1.00						

```
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3. 293
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 320.30
 STREET LENGTH(FEET) = 317.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) = 10.48
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.32
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.78 STREET FLOW TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) =
                                              5.57
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.670
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 4.90
 TOTAL AREA(ACRES) = 1.4
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.58
 FLOW VELOCITY(FEET/SEC.) = 2.67 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                       302.00 =
*******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.670
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.23
TOTAL AREA(ACRES) = 1.7 TOTAL RUNOFF(CFS) = 6.4
 TC(MIN.) = 5.57
******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.30 DOWNSTREAM(FEET) = 314.90
 FLOW LENGTH(FEET) = 1091.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.93
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.47
 PIPE TRAVEL TIME(MIN.) = 6.21
                            Tc(MIN.) =
                                        11. 77
                                                  1468.00 FEET.
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                         303.00 =
```

```
FLOW PROCESS FROM NODE 264.00 TO NODE
                                      264.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.77
RAINFALL INTENSITY(INCH/HR) = 2.88
TOTAL STREAM AREA(ACRES) = 1.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    6.47
*************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
 UPSTREAM ELEVATION(FEET) = 324.50
 DOWNSTREAM ELEVATION(FEET) = 323.50
ELEVATION DIFFERENCE(FEET) = 1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.293
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.29
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 321.30
 STREET LENGTH(FEET) = 293.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 11.14
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.04
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
STREET FLOW TRAVEL TIME(MIN.) = 2.39 Tc(MIN.) =
                                                5.68
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.610
  *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 4.95
TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 1.4
                                 PEAK FLOW RATE(CFS) =
                                                          5. 22
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.33
 FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) = 0.99
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 353.00 FEET.
 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 81
```

```
25PR. OUT
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section =
                                                0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                1.18
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                    0. 51
 STREET FLOW TRAVEL TIME(MIN.) = 5.59 Tc(MIN.) =
                                            9.49
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.311
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.90 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) =
                                                     2.04
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.08
 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) = 0.67
 LONGEST FLOWPATH FROM NODE 315.00 TO NODE
                                     317.00 = 697.00 FEET.
**********************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.311
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.34
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 6.38
 TC(MIN.) = 9.49
**********************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.311
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7591
 SUBAREA AREA(ACRES) = 0.41 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) = 6.94
 TC(MIN.) = 9.49
***********************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.49
 RAINFALL INTENSITY(INCH/HR) = 3.31
TOTAL STREAM AREA(ACRES) = 2.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 6.94
*******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
```

*USER SPECIFIED(SUBAREA):
NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 322.00
DOWNSTREAM ELEVATION(FEET) = 315.00
ELEVATION DIFFERENCE(FEET) = 7.00
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.740

```
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.579
 SUBAREA RUNOFF (CFS) = 0.11
 TOTAL AREA(ACRES) =
                       0.05 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 4 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.00 DOWNSTREAM ELEVATION(FEET) = 312.50
 STREET LENGTH(FEET) = 245.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.95
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.53 STREET FLOW TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) =
                                                 7.83
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.748
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.490
 SUBAREA AREA(ACRES) = 1.23
                               SUBAREA RUNOFF(CFS) = 2.26
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
                       1.3
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.71
 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) = 0.71
 LONGEST FLOWPATH FROM NODE 320.00 TO NODE
                                         322.00 =
***********************
 FLOW PROCESS FROM NODE 322.00 TO NODE 264.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << < <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.83
 RAINFALL INTENSITY(INCH/HR) = 3.75
TOTAL STREAM AREA(ACRES) = 1.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     2.35
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                     Tc
                             INTENSITY
                                          AREA
 NUMBER
           (CFS)
                    (MIN.) (INCH/HOUR)
                                          (ACRE)
            6. 47 11. 77
                            2.881
                                            1.69
     1
     2
           10. 36
                   6. 18
                              4.365
                                            2.74
     3
            6.94
                    9.49
                               3.311
                                            2.76
            2.35
                    7.83
                               3.748
                                            1.28
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 4 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                            INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
           20. 13
     1
                    6. 18
                             4. 365
     2
           21. 27
                    7.83
                              3.748
```

```
22. 09 9. 49
21. 15 11. 77
                            2.881
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 22.09 Tc(MIN.) =
                                        9 49
 TOTAL AREA(ACRES) =
                      8.5
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                        264.00 =
                                                1468. 00 FEET.
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 10
-----
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
| BEGINING OF ANALYSIS PA-2
 FLOW PROCESS FROM NODE 250.00 TO NODE 251.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 346.00
 DOWNSTREAM ELEVATION(FEET) = 344.70
ELEVATION DIFFERENCE(FEET) = 1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.32
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
                                               0.32
*******************
 FLOW PROCESS FROM NODE 251.00 TO NODE 252.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 327.60
 STREET LENGTH(FEET) = 634.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.32
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) =
                                             6.75
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.124
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.38
                             SUBAREA RUNOFF(CFS) = 4.50
 TOTAL AREA(ACRES) =
                       1.5
                                PEAK FLOW RATE(CFS) =
                                                      4.76
```

3. 311

END OF SUBAREA STREET FLOW HYDRAULICS:

3

```
DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.63
 FLOW VELOCITY(FEET/SEC.) = 3.81 DEPTH*VELOCITY(FT*FT/SEC.) = 1.29
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                   252.00 =
***********************
 FLOW PROCESS FROM NODE 252.00 TO NODE 252.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.124
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 6.75
**********************
 FLOW PROCESS FROM NODE 252.00 TO NODE 257.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.60 DOWNSTREAM(FEET) = 318.10
 FLOW LENGTH(FEET) = 447.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.80
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.54
 PIPE TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) =
                                   7.85
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                   257.00 =
**********************
 FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.85
 RAINFALL INTENSITY(INCH/HR) = 3.74
 TOTAL STREAM AREA(ACRES) = 2.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 253.00 TO NODE 254.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 331.30
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE (FEET) =
                         1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) =
                0.08 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 254.00 TO NODE 255.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 330.00 DOWNSTREAM ELEVATION(FEET) = 325.90
 STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.30
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) =
                                             6.04
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.430
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.760
 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 2.53
 TOTAL AREA(ACRES) = 0.8
                               PEAK FLOW RATE(CFS) =
                                                      2.79
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.77
 FLOW VELOCITY(FEET/SEC.) = 2.60 DEPTH*VELOCITY(FT*FT/SEC.) = 0.84
 LONGEST FLOWPATH FROM NODE 253.00 TO NODE 255.00 = 359.00 FEET.
******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 255.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.430
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) =
 TOTAL AREA (ACRES) = 1.2 TOTAL RUNOFF (CFS) = 4.11
 TC(MIN.) =
            6.04
*******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 256.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 320.90 DOWNSTREAM(FEET) = 318.50
 FLOW LENGTH(FEET) = 326.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.08
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  4. 11
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 253.00 TO NODE
                                        256.00 =
                                                  685.00 FEET.
******************
 FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.988
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          7. 11
```

25PR. OUT FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.988 *USER SPECIFIED(SUBAREA): DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 5.0 TOTAL RUNOFF(CFS) = TC(MIN.) = 7.11******************* FLOW PROCESS FROM NODE 256.00 TO NODE 257.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << << ______ ELEVATION DATA: UPSTREAM(FEET) = 318.50 DOWNSTREAM(FEET) = 318.10 FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.012DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.01 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15. 28 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.33 LONGEST FLOWPATH FROM NODE 253.00 TO NODE 257.00 = FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< -----TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.33 RAINFALL INTENSITY(INCH/HR) = 3.91 TOTAL STREAM AREA(ACRES) = 5.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY **AREA** (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE)

 8. 54
 7. 85
 3. 742

 15. 28
 7. 33
 3. 912

 1 2.62 2 15. 28 5.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY (INCH/HOUR) NUMBER (CFS) (MIN.)1 23. 25 7.33 3.912 2 23. 15 7.85 3.742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.25 Tc(MIN.) = TOTAL AREA(ACRES) = 7.7 7.33 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 257.00 = 1146. 00 FEET. ********************** FLOW PROCESS FROM NODE 257.00 TO NODE 264.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< -----

ELEVATION DATA: UPSTREAM(FEET) = 315.50 DOWNSTREAM(FEET) = 314.50 FLOW LENGTH(FEET) = 96.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.61 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1

```
PIPE-FLOW(CFS) = 23.25
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
                                          7. 51
                                                 1242.00 FEET.
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                         264.00 =
********************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.51
 RAINFALL INTENSITY(INCH/HR) = 3.85
TOTAL STREAM AREA(ACRES) = 7.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  23. 25
*******************
 FLOW PROCESS FROM NODE 258.00 TO NODE 259.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 342.00
 DOWNSTREAM ELEVATION(FEET) = 341.00
ELEVATION DIFFERENCE(FEET) = 1.00
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                      7.078
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH =
         (Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.001
 SUBAREA RUNOFF(CFS) = 0.15
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
                                                0.15
******************
 FLOW PROCESS FROM NODE 259.00 TO NODE 260.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 341.00 DOWNSTREAM(FEET) = 323.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 574.00 CHANNEL SLOPE = 0.0314
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.309
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.95
 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 2.42
 Tc(MIN.) =
            9.50
 SUBAREA AREA(ACRES) =
                     0. 90
                               SUBAREA RUNOFF(CFS) = 1.64
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.555
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
                      1.0
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 4.94
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 260.00 =
                                                   674.00 FEET.
**********************
 FLOW PROCESS FROM NODE 260.00 TO NODE 264.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 314.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 151.00 CHANNEL SLOPE = 0.0596
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
```

```
CHANNEL FLOW THRU SUBAREA(CFS) =
                              1. 76
 FLOW VELOCITY(FEET/SEC.) = 1.88 FLOW DEPTH(FEET) = 0.06
 TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 10.84
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE
                                        264.00 =
                                                 825.00 FEET.
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.84
 RAINFALL INTENSITY(INCH/HR) = 3.04
 TOTAL STREAM AREA(ACRES) = 0.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 1.76
**********************
 FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 349.50
                         347. 50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                            2.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.006
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 80.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.448
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRÈS) = 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 262.00 TO NODE 263.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 347.50 DOWNSTREAM ELEVATION(FEET) = 322.00
 STREET LENGTH(FEET) = 880.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95
 STREET FLOW TRAVEL TIME(MIN.) = 4.46 Tc(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.108
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 SUBAREA AREA(ACRES) = 1.82
                             SUBAREA RUNOFF(CFS) = 3.56
 TOTAL AREA(ACRES) =
                      1. 9
                               PEAK FLOW RATE(CFS) =
                                                      3.76
```

END OF SUBAREA STREET FLOW HYDRAULICS:

```
FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY(FT*FT/SEC.) = 1.24
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      263.00 =
********************
 FLOW PROCESS FROM NODE 263.00 TO NODE 264.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.00 DOWNSTREAM(FEET) = 314.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 184.00 CHANNEL SLOPE = 0.0435
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.76
 FLOW VELOCITY(FEET/SEC.) = 2.23 FLOW DEPTH(FEET) = 0.10
 TRAVEL TIME(MIN.) = 1.37 Tc(MIN.) = 11.84
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      264.00 =
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.84
 RAINFALL INTENSITY(INCH/HR) =
                         2.87
 TOTAL STREAM AREA(ACRES) = 1.92
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              3. 76
 ** CONFLUENCE DATA **
                                     AREA
 STREAM
         RUNOFF
                   Tc
                         INTENSITY
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                     (ACRE)
                7. 51
          23. 25
                                       7.66
    1
                           3.849
          1. 76 10. 84
    2
                           3.039
                                       0.96
    3
           3. 76 11. 84
                           2.871
                                       1.92
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                      (INCH/HOUR)
          26. 85
                7. 51
                        3.849
    1
    2
          23. 56 10. 84
                          3.039
    3
          22. 76 11. 84
                          2.871
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 26.85 Tc(MIN.) =
                                       7.51
 TOTAL AREA(ACRES) =
                     10.5
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                      264.00 =
 FLOW PROCESS FROM NODE 264.00 TO NODE
                                   264.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF TC INTENSITY
                                   AREA
                        (I NCH/HOUR)
 NUMBER
          (CFS)
                 (MIN.)
                                   (ACRE)
          26.85
                 7. 51
                          3.849
                                   10.54
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 264.00 = 1242.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF
                 Tc
                        INTENSITY
                                    AREA
 STREAM
          (CFS)
                 (MIN.)
 NUMBER
                        (INCH/HOUR)
                                   (ACRE)
          22.09
                 9.49
                         3. 311
                                    8.47
    1
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE
                                      264.00 =
                                               1468, 00 FEET.
```

DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.59

```
** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                       INTENSITY
        (CFS) (MI N.)
44.34 7.51
45.18 9.49
                     (I NCH/HOUR)
 NUMBER
                       3. 849
    1
    2
                          3.311
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 45.18
                         Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    19.0
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 143.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 304.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2044.00 CHANNEL SLOPE = 0.0049
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 45.18
FLOW VELOCITY(FEET/SEC.) = 2.92 FLOW DEPTH(FEET) = 0.87
TRAVEL TIME(MIN.) = 11.68 Tc(MIN.) = 21.17
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 143.00 = 38
                                  143.00 = 3512.00 FEET.
******************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 10
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 346.00
 DOWNSTREAM ELEVATION(FEET) = 344.70
 ELEVATION DIFFERENCE(FEET) =
                        1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.32
                  0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 62
...........
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 334.40
 STREET LENGTH(FEET) = 458.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.66 Tc(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.341
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS)
 TOTAL AREA(ACRES) =
                     1.0
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.46
 FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                       202. 00 = 523. 00 FEET.
 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) = 330.40 DOWNSTREAM(FEET) = 328.70
 FLOW LENGTH(FEET) = 168.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.40
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.33
 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) =
                                        6.75
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                         203.00 =
                                                  691, 00 FFFT.
*******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.124
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 3.81
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 6.0
 TC(MIN.) = 6.75
*******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 328.70 DOWNSTREAM(FEET) = 326.70
 FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.56
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 6. 97
 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                       204.00 =
***********************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =

```
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.940
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.25
*******************
 FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 326.70 DOWNSTREAM(FEET) = 321.20
 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.04
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.96
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) =
                                   7. 61
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                   205. 00 = 1106. 00 FEET.
******************
 FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.817
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
         7. 61
******************
 FLOW PROCESS FROM NODE 205.00 TO NODE 211.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 321.20 DOWNSTREAM(FEET) = 316.60
 FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.33
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.64
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                   7.92
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                   211.00 =
                                          1293. 00 FEET.
*******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.92
 RAINFALL INTENSITY(INCH/HR) = 3.72
 TOTAL STREAM AREA(ACRES) = 3.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            11.64
**********************
 FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900

```
INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                 85.00
 UPSTREAM ELEVATION(FEET) =
                         337.40
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                           2.90
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 334.50 DOWNSTREAM ELEVATION(FEET) = 325.00
 STREET LENGTH(FEET) = 296.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.05
 STREET FLOW TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) =
                                              4.78
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.33 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.4
                             PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.87
 FLOW VELOCITY(FEET/SEC.) = 4.20 DEPTH*VELOCITY(FT*FT/SEC.) = 1.44
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                      208.00 =
*******************
 FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 3.01
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 8.4
 TC(MIN.) = 4.78
**********************
 FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 319.40
```

FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012

```
DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.23
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES =
               8. 46
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) =
                                     5. 16
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                     209.00 =
                                               501.00 FEET.
******************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.905
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) =
                                            11.74
 TC(MIN.) = 5.16
*******************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.905
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 5.16
*******************
 FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 319.40 DOWNSTREAM(FEET) = 317.50
 FLOW LENGTH(FEET) = 382.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.83
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.45
 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE 210.00 =
                                              883.00 FEET.
******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.334
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.22 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) =
                                            4.18
 TC(MIN.) = 6.25
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.334
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) =
                                            1.88
```

```
TOTAL AREA(ACRES) =
                    5.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          6, 25
******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 317.50 DOWNSTREAM(FEET) = 316.60
 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.74
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.94
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) =
                                      6.60
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                      211.00 =
                                             1024.00 FFFT.
***********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.60
 RAINFALL INTENSITY(INCH/HR) =
                         4. 18
 TOTAL STREAM AREA(ACRES) = 5.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                        INTENSITY
                                     AREA
 NUMBER
          (CFS)
                  (MI N. )
                         (INCH/HOUR)
                                    (ACRE)
                  7. 92 3. 722
          11. 64
    1
                                       3.86
          17. 94 6. 60
    2
                           4. 185
                                       5.24
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.) (INCH/HOUR)
    1
          27. 65 6. 60
                          4. 185
          27. 60 7. 92
                          3.722
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 27.65 Tc(MIN.) = TOTAL AREA(ACRES) = 9.1
                                      6.60
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                      211.00 =
                                              1293.00 FEET.
***********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 217.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.60 DOWNSTREAM(FEET) = 315.20
 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.25
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               27. 65
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                    217.00 = 1425.00 FEET.
************************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.84
 RAINFALL INTENSITY(INCH/HR) = 4.09
 TOTAL STREAM AREA(ACRES) = 9.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 27.65
*******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 333.70
 DOWNSTREAM ELEVATION(FEET) = 331.40
 ELEVATION DIFFERENCE(FEET) =
                            2.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.32
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 213.00 TO NODE 217.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 331.40 DOWNSTREAM ELEVATION(FEET) = 320.80
 STREET LENGTH(FEET) = 523.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) = 8.13
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.83
 STREET FLOW TRAVEL TIME(MIN.) = 3.05 Tc(MIN.) =
                                              6.38
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.279
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.12 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                      1. 2
                                PEAK FLOW RATE(CFS) =
                                                       4.06
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.55
 FLOW VELOCITY(FEET/SEC.) = 3.29 DEPTH*VELOCITY(FT*FT/SEC.) = 1.11
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                      217. 00 = 598. 00 FEET.
*********************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.279
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
```

```
SUBAREA AREA(ACRES) = 0.62 SUBAREA RUNOFF(CFS) = 2.10
 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          6.38
***********************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.38
 RAINFALL INTENSITY(INCH/HR) = 4.28
 TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 6. 15
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                         INTENSITY
                                      AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
                  6. 84 4. 090
6. 38 4. 279
    1
          27. 65
                                       9.10
    2
          6. 15
                                       1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
          (CFS) (MI N.)
32.58 6.38
33.53 6.84
 NUMBER
         (CFS)
                       (INCH/HOUR)
                       4. 279
    1
                           4.090
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 33.53 Tc(MIN.) = TOTAL AREA(ACRES) = 10.9
                                      6.84
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                       217.00 =
                                              1425. 00 FEET.
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
 FLOW PROCESS FROM NODE 214.00 TO NODE 215.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 351.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE (FEET) =
                          1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 70.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.001
 SUBAREA RUNOFF(CFS) = 0.38
 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 330.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 228.00 CHANNEL SLOPE = 0.0877
```

```
CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.788
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
                                           1. 22
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.06
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 0.63
 Tc(MIN.) = 7.70
 SUBAREA AREA(ACRES) = 0.71
                            SUBAREA RUNOFF(CFS) = 1.69
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.9
                            PEAK FLOW RATE(CFS) =
                                                    2.05
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 7.15
 LONGEST FLOWPATH FROM NODE 214.00 TO NODE 216.00 =
**********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.70
 RAINFALL INTENSITY(INCH/HR) = 3.79
 TOTAL STREAM AREA(ACRES) = 0.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               2.05
***********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 22.01 RAIN INTENSITY(INCH/HOUR) = 1.92
 TOTAL AREA(ACRES) = 58.07 TOTAL RUNOFF(CFS) = 53.39
*******************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.01
 RAINFALL INTENSITY(INCH/HR) = 1.92
 TOTAL STREAM AREA(ACRES) = 58.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                53.39
 ** CONFLUENCE DATA **
        RUNOFF
 STREAM
                   Tc
                          INTENSITY
                                      AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
                  7. 70
    1
           2.05
                           3. 788
                                       0.86
          53. 39
    2
                            1.925
                 22.01
                                       58.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                         INTENSITY
 NUMBER
                 (MIN.)
          (CFS)
                         (INCH/HOUR)
          20.74
                  7.70
                           3.788
    1
          54.43
                22. 01
                           1.925
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 54.43 Tc(MIN.) = TOTAL AREA(ACRES) = 58.9
                                       22.01
 LONGEST FLOWPATH FROM NODE
                        212.00 TO NODE
                                       216.00 =
                                                 598.00 FEET.
```

```
FLOW PROCESS FROM NODE 216.00 TO NODE
                                   217.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 326.90 DOWNSTREAM(FEET) = 315.20
 FLOW LENGTH(FEET) = 551.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.15
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 54.43
 PIPE TRAVEL TIME(MIN.) = 0.70
                            Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                      217.00 =
                                               1149.00 FEET.
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.886
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4849
 SUBAREA AREA(ACRES) = 2.03 SUBAREA RUNOFF(CFS) =
                                             2.41
 TOTAL AREA(ACRES) =
                    61.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
******************
 FLOW PROCESS FROM NODE
                     217.00 TO NODE
                                   217.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
-----
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF
                                    AREA
                 Tc
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
          55.76
                 22.71
                                    60.96
    1
                         1. 886
                        212.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                      217. 00 = 1149. 00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                         INTENSITY
                                    AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
          33.53
                  6.84
                          4.090
                                    10.92
 LONGEST FLOWPATH FROM NODE
                        200.00 TO NODE
                                      217. 00 = 1425. 00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF
 STREAM
                         INTENSITY
               Tc
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
                            4.090
    1
         50.32
                  6.84
         71.22
    2
                  22.71
                            1.886
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 71.22
                           Tc(MIN.) =
                                      22.71
                     71.9
 TOTAL AREA(ACRES) =
*********************
 FLOW PROCESS FROM NODE 217.00 TO NODE
                                   217.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 2 <<<<<
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.70 DOWNSTREAM(FEET) = 304.00
 FLOW LENGTH(FEET) = 383.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.6 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 10.54
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 71.22
 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) =
                                   23.31
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                   218.00 =
                                           1808. 00 FEET.
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.854
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5331
 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 72.3 TOTAL RUNOFF(CFS) =
                                          71.43
 TC(MIN.) = 23.31
*******************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
        (CFS)
         (LFS) (MIN.) (INCH/HOUR) (ACRE)
71.43 23.31 1.854 72.26
 NUMBER
   1
                      200.00 TO NODE 218.00 = 1808.00 FEET.
 LONGEST FLOWPATH FROM NODE
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR)
                                 (ACRE)
        45. 18 21. 17
  1
                       1. 974 19. 01
                       300.00 TO NODE 218.00 = 3512.00 FEET.
 LONGEST FLOWPATH FROM NODE
 ** PEAK FLOW RATE TABLE **
 STREAM
      RUNOFF Tc
                      INTENSITY
        (CFS) (MI N.)
110.04 21.17
113.89 23.31
 NUMBER
                       (INCH/HOUR)
                       1. 974
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 113.89 Tc(MIN.) = 23.31
 TOTAL AREA(ACRES) =
                   91.3
********************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 218.00 TO NODE 133.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
_____
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 301.40
 CHANNEL LENGTH THRU SUBAREA(FEET) = 518.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 113.89
 FLOW VELOCITY(FEET/SEC.) = 4.05 FLOW DEPTH(FEET) = 1.48
 TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 25.45
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 133.00 = 4030.00 FEET.
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 10
```

```
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 335.00
 DOWNSTREAM ELEVATION (FEET) = 328.00
 ELEVATION DIFFERENCE (FEET) =
                          7.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.423
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.85
 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 315.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 732.00 CHANNEL SLOPE = 0.0100
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR =
                                     1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.852
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.96
 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 3.08
 Tc(MIN.) =
           7.51
 SUBAREA AREA(ACRES) = 1.66
                            SUBAREA RUNOFF(CFS) = 4.03
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                     4.68
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 4.65
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 =
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.852
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.51
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.51
 RAINFALL INTENSITY(INCH/HR) = 3.85
 TOTAL STREAM AREA(ACRES) = 2.37
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 5.75
******************
```

25PR. OUT

FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 7 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE _____ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.91 RAIN INTENSITY(INCH/HOUR) = 3.22 TOTAL AREA(ACRES) = 27.19 TOTAL RUNOFF(CFS) = ******************** FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = ______ >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< < >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.91 RAINFALL INTENSITY(INCH/HR) = 3.22TOTAL STREAM AREA(ACRES) = 27.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** Tc RUNOFF STREAM INTENSITY AREA (CFS) NUMBER (MIN.) (INCH/HOUR) (ACRE) 5. 75 7. 51 3. 852 2.37 1 2 73. 41 9. 91 3.220 27.19 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (MIN.) (INCH/HOUR) (CFS) (CFS) (MIN.) 61.35 7.51 78.22 9.91 3. 852 1 2 3.220 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 78.22 Tc(MIN.) = TOTAL AREA(ACRES) = 29.6 9. 91 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = ****************** FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 307.40 DOWNSTREAM(FEET) = 301.40 FLOW LENGTH(FEET) = 124.00 MANNING'S N = 0.013DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.77 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 78.22PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.01 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 = ****************** FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.198 *USER SPECIFIED(SUBAREA): PAVED SURFACE RUNOFF COEFFICIENT = .8700 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8223 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 0.86 TOTAL AREA(ACRES) = 29.9 TOTAL RUNOFF(CFS) = TC(MIN.) = 10.01******************

FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11

```
>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
       RUNOFF
               Tc
                      INTENSITY
                                 AREA
 NUMBER
         (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         78.55
                10.01
                                 29.87
   1
                        3. 198
 LONGEST FLOWPATH FROM NODE
                      130.00 TO NODE 133.00 =
                                            956.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
        RUNOFF
 STREAM
                      INTENSITY
                Tc
                                 AREA
 NUMBER
         (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         113.89
               25.45
                        1. 753
                                 91.27
   1
 LONGEST FLOWPATH FROM NODE
                      300.00 TO NODE 133.00 =
                                           4030.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF
 STREAM
             Tc
                      INTENSITY
 NUMBER
        (CFS)
                (MIN.)
                      (INCH/HOUR)
        123.37
                10.01
                          3.198
    1
    2
        156. 93
                25. 45
                         1.753
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 156.93 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                  121.1
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE
                                133.00 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE
                                128.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.40 DOWNSTREAM(FEET) = 299.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 311.00 CHANNEL SLOPE = 0.0051
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 156.93
 FLOW VELOCITY(FEET/SEC.) = 4.55 FLOW DEPTH(FEET) = 1.77
 TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 26.59
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                 128.00 =
                                           4341.00 FEET.
******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 ******************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .9000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
                       317.00
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.59
 TOTAL AREA(ACRES) =
                  0.13 TOTAL RUNOFF(CFS) =
                                         0.59
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
```

_____ ELEVATION DATA: UPSTREAM(FEET) = 317.00 DOWNSTREAM(FEET) = 313.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0101 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006

NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<

*USER SPECIFIED(SUBAREA):

NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.10

AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.81

Tc(MIN.) =3.54

SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.58

AREA-AVERAGE RUNOFF COEFFICIENT = 0.686

TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 0.6

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 3.62

LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 =

FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

______ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006

NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA):

NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300

AREA-AVERAGE RUNOFF COEFFICIENT = 0.6728

SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 0.60

TC(MIN.) =3.54

FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1

>>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <

______ TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 3.54

RAINFALL INTENSITY(INCH/HR) = 5.01

TOTAL STREAM AREA(ACRES) = 0.82

PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76

FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE =

>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<

USER-SPECIFIED VALUES ARE AS FOLLOWS:

TC(MIN) = 10.22 RAIN INTENSITY(INCH/HOUR) = 3.16

TOTAL AREA(ACRES) = 3.81 TOTAL RUNOFF(CFS) =

FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 10.22

RAINFALL INTENSITY(INCH/HR) = 3. 16

TOTAL STREAM AREA(ACRES) = 3.81 ** CONFLUENCE DATA **

```
STREAM
       RUNOFF
                    Tc
                          INTENSITY
                                      AREA
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)
                   3.54
                            5.006
    1
           2.76
                                        0.82
    2
           10.53
                  10. 22
                            3.157
                                        3.81
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
           6.40
                         5. 006
    1
                  3.54
                10. 22
          12. 27
    2
                           3.157
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 12.27 Tc(MIN.) = TOTAL AREA(ACRES) = 4.6
                                       10. 22
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 127.00 =
                                                 598.00 FEET.
***********************
 FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 299.80
 FLOW LENGTH(FEET) = 146.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.43
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.27
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 10.39
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                                 744.00 FEET.
                                       128.00 =
***********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.124
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8199
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) =
                                               0.94
 TOTAL AREA(ACRES) = 5.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.39
***********************
 FLOW PROCESS FROM NODE 128.00 \text{ TO NODE} 128.00 \text{ IS CODE} = 11
 -----
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                     AREA
 NUMBER
          (CFS)
                  (MIN.)
                        (INCH/HOUR)
                                    (ACRE)
                                      5. 11
    1
          13.09
                  10.39
                           3. 124
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 128.00 =
                                                 744.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
          RUNOFF
                         INTENSITY
                                     AREA
                 Tc
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                   (ACRE)
          156. 93
                 26.59
                           1.704
                                   121. 14
 LONGEST FLOWPATH FROM NODE
                         300.00 TO NODE 128.00 = 4341.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                         INTENSITY
```

```
(MIN.) (INCH/HOUR)
10.39
         (CFS)
    1
         74.41
    2
        164.07
                  26. 59
                           1.704
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 164.07 Tc(MIN.) = 26.59
 TOTAL AREA(ACRES) =
                    126. 2
********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 12
-----
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 299.80 DOWNSTREAM(FEET) = 296.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 678.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 164.07

FLOW VELOCITY(FEET/SEC.) = 4.57 FLOW DEPTH(FEET) = 1.83

TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) = 29.06

LONGEST FLOWPATH FROM NODE 300.00 TO NODE 113.00 = 5019.00 FEET.
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                         3.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.617
 SUBAREA RUNOFF (CFS) = 0.21
                 0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*********************
 FLOW PROCESS FROM NODE 111.00 \text{ TO NODE} 112.00 \text{ IS CODE} = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 321.00 DOWNSTREAM(FEET) = 315.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 291.00 CHANNEL SLOPE = 0.0206
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.887
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.80
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 1.73
 Tc(MIN.) =
           7.40
 SUBAREA AREA(ACRES) = 0.30
                             SUBAREA RUNOFF(CFS) = 0.68
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.580
 TOTAL AREA(ACRES) = 0.4
                               PEAK FLOW RATE(CFS) =
                                                    0.86
```

NUMBER

```
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 3.23
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 =
                                               376.00 FEET.
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.887
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5800
 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 0.65
TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 1.5
 TC(MIN.) = 7.40
**********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE =
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.40
 RAINFALL INTENSITY(INCH/HR) =
                         3.89
 TOTAL STREAM AREA(ACRES) = 0.67
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               1.51
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 21.61 RAIN INTENSITY(INCH/HOUR) = 1.95
 TOTAL AREA(ACRES) = 54.44 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.61
 RAINFALL INTENSITY(INCH/HR) = 1.95
 TOTAL STREAM AREA(ACRES) = 54.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               79. 21
 ** CONFLUENCE DATA **
 STREAM
       RUNOFF
                  Tc
                         INTENSITY
                                     AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                    (ACRE)
           1.51
                  7.40
    1
                           3.887
                                      0.67
    2
          79. 21
                           1.947
                 21.61
                                     54.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
          28.64
                 7.40
                          3.887
    1
    2
          79. 97 21. 61
                          1.947
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 79.97 Tc(MIN.) = TOTAL AREA(ACRES) = 55.1
                                     21.61
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                     112.00 =
                                               598.00 FEET.
```

```
FLOW PROCESS FROM NODE 112.00 TO NODE
                                 113.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 311.00 DOWNSTREAM(FEET) = 306.80 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.25
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 79.97
 PIPE TRAVEL TIME(MIN.) = 0.25
                          Tc(MIN.) =
                                    21.86
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                    113.00 =
                                              810.00 FEET.
******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF Tc
 STRFAM
                       INTENSITY
                                  AREA
 NUMBER
         (CFS)
                (MIN.)
                      (INCH/HOUR)
                                  (ACRE)
         79. 97
               21.86
   1
                       1. 933
                                  55. 11
 LONGEST FLOWPATH FROM NODE
                       212.00 TO NODE 113.00 = 810.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                Tc
                       INTENSITY
                                  AREA
 NUMBER
         (CFS)
                 (MIN.)
                                  (ACRE)
                       (INCH/HOUR)
               29.06
         164.07
                        1. 609
                                 126.25
    1
 LONGEST FLOWPATH FROM NODE
                       300.00 TO NODE 113.00 = 5019.00 FEET.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                       INTENSITY
 NUMBER
        (CFS)
                (MIN.)
                       (INCH/HOUR)
               21. 86
29. 06
    1
        203.37
                          1. 933
    2
        230.62
                          1. 609
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 230.62
                          Tc(MIN.) =
 TOTAL AREA(ACRES) =
                   181.4
*******************
 FLOW PROCESS FROM NODE 113.00 TO NODE
                                 113.00 \text{ LS CODF} = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
********************
                  113.00 TO NODE
 FLOW PROCESS FROM NODE
                                 105.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 306.80 DOWNSTREAM(FEET) = 300.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 585.00 CHANNEL SLOPE = 0.0116
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 230.62
 FLOW VELOCITY(FEET/SEC.) = 6.78 FLOW DEPTH(FEET) = 1.74
 TRAVEL TIME(MIN.) = 1.44 Tc(MIN.) =
                                30.50
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                    105.00 =
************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.559
```

```
*USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6750
 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 181.8 TOTAL RUNOFF(CFS) =
                                            0.57
                                            230, 62
 TC(MIN.) = 30.50
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.559
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6749
 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 181.9 TOTAL RUNOFF(CFS) =
                                            230.62
 TC(MIN.) = 30.50
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 105.00 TO NODE
                                   20.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 300.00 DOWNSTREAM(FEET) = 295.10
 CHANNEL LENGTH THRU SUBAREA(FEET) = 974.00 CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 230.62
 FLOW VELOCITY(FEET/SEC.) = 5.10 FLOW DEPTH(FEET) = 2.22 TRAVEL TIME(MIN.) = 3.19 Tc(MIN.) = 33.68
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      20.00 = 6578.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
   ______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.463
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6753
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) =
                                            0.41
 TOTAL AREA(ACRES) = 182.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 33.68
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
***********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.463
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6755
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                 182. 4 TOTAL RUNOFF(CFS) =
                                            230.62
 TC(MIN.) =
           33.68
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
**********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE =
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
```

TOTAL NUMBER OF STREAMS = 2

```
TIME OF CONCENTRATION(MIN.) = 33.68
 RAINFALL INTENSITY(INCH/HR) = 1.46
 TOTAL STREAM AREA(ACRES) = 182.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 230 62
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
-----
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
 UPSTREAM ELEVATION(FEET) = 324.00
 DOWNSTREAM ELEVATION(FEÉT) = 322.50
ELEVATION DIFFERENCE(FEET) = 1.50
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.372
 SUBAREA RUNOFF(CFS) = 0.19
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.19
************************
 FLOW PROCESS FROM NODE 101.00 TO NODE
                                     101.30 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.50 DOWNSTREAM(FEET) = 309.80
 CHANNEL LENGTH THRU SUBAREA (FEET) = 344.00 CHANNEL SLOPE = 0.0369
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.839
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.17
 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 1.38
 Tc(MIN.) =
            7.54
                             SUBAREA RUNOFF(CFS) = 1.57
 SUBAREA AREA(ACRES) = 0.65
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                      0. 7
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 5.13
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 101.30 =
                                                   429.00 FEET.
************************
 FLOW PROCESS FROM NODE 101.30 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.00 DOWNSTREAM(FEET) = 305.00
 FLOW LENGTH(FEET) = 248.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.03
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 1. 74
 PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) =
                                        8.37
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 =
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
```

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

```
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.592
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.61
TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 2.24
 TC(MIN.) = 8.37
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.592
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 1.88
 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 8.37
************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 218.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.61
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.12
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) =
                                        8.79
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                        20.00 =
                                                 895, 00 FFFT.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.79
 RAINFALL INTENSITY(INCH/HR) = 3.48
 TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  4.12
 ** CONFLUENCE DATA **
        RUNOFF
 STREAM
                    Tc
                          INTENSITY
                                       AREA
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)
                  33. 68 1. 463
    1
          230.62
                                       182.35
           4. 12
                  8. 79
    2
                            3.479
                                        1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                         INTENSITY
 NUMBER
                  (MIN.)
          (CFS)
                         (INCH/HOUR)
          64. 29
                  8. 79
                            3.479
    1
          232. 35
                33.68
                           1.463
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 232.35 Tc(MIN.) =
                                        33.68
 TOTAL AREA(ACRES) =
                     184. 2
 LONGEST FLOWPATH FROM NODE
                         300.00 TO NODE
                                        20.00 =
                                                 6578.00 FEET.
```

```
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
 BEGINING OF ANALYSIS PA-1
******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) = 317.80
 ELEVATION DIFFERENCE (FEET) = 0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                      5.702
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
                                      63.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.600
 SUBAREA RUNOFF(CFS) = 0.33
 TOTAL AREA(ACRES) =
                    0. 10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.80 DOWNSTREAM ELEVATION(FEET) = 311.90
 STREET LENGTH(FEET) = 406.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.28
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.60
 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) =
                                            8.67
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.509
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 0.83
                           SUBAREA RUNOFF(CFS) = 2.07
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                                                     2.32
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.91
 FLOW VELOCITY(FEET/SEC.) = 2.54 DEPTH*VELOCITY(FT*FT/SEC.) = 0.77
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 481.00 FEET.
```

```
25PR. OUT
 FLOW PROCESS FROM NODE 12.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 308.60
 FLOW LENGTH(FEET) = 108.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.73
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   2. 32
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                          15.00 =
                                                    589. 00 FEET.
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.05
 RAINFALL INTENSITY(INCH/HR) = 3.41
TOTAL STREAM AREA(ACRES) = 0.93
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  2.32
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 318.40
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 63.00
```

(Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION! 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.599 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =

****************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62

>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA

>>>>(STREET TABLE SECTION # 2 USED) <<<<

______ UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 311.30 STREET LENGTH(FEET) = 522.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00

DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00

INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1. 97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25HALFSTREET FLOOD WIDTH(FEET) = 6.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.01

```
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.50
 STREET FLOW TRAVEL TIME(MIN.) = 4.33 Tc(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.194
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.43 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS)
                    1.5
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.13
 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 597.00 FEET.
************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
-----
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.04
 RAINFALL INTENSITY(INCH/HR) = 3.19
TOTAL STREAM AREA(ACRES) = 1.53
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  3.47
 ** CONFLUENCE DATA **
       RUNOFF
                          INTENSITY
 STREAM
                    Tc
                                       AREA
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
                                       (ACRE)
                   9. 05 3. 413
            2.32
                                         0.93
    1
    2
            3.47
                  10.04
                             3. 194
                                         1.53
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STRFAM
                         INTENSITY
 NUMBER
           (CFS)
                  (MIN.) (INCH/HOUR)
                       3. 413
            5.45
                  9.05
    1
           5.64
                10.04
                            3. 194
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.64 Tc(MIN.) = 10.04
TOTAL AREA(ACRES) = 2.5
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                        15.00 =
                                                  597.00 FEET.
**************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 308.60 DOWNSTREAM(FEET) = 303.30
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.21
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.64
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
                                       10. 12
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                        16.00 =
                                                  663.00 FEET.
*********************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.177
 *USER SPECIFIED(SUBAREA):
```

DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.62
 TOTAL AREA(ACRES) = 3.6 TOTAL RUNOFF(CFS) =
                                         8. 17
 TC(MIN.) =
         10. 12
*********************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 331.50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                        5.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.948
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.32
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 18.00 TO NODE
                                 19.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOI DAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 306.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 385.00 CHANNEL SLOPE = 0.0234
 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.279
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.49
 AVERAGE FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) = 1.43
 Tc(MIN.) =
          6.38
 SUBAREA AREA(ACRES) = 0.64
                          SUBAREA RUNOFF(CFS) = 1.73
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.7
                            PEAK FLOW RATE(CFS) =
                                                1. 99
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 5.27
 LONGEST FLOWPATH FROM NODE
                      17.00 TO NODE
                                   19.00 =
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.279
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 1.19
 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 6.38
**********************
 FLOW PROCESS FROM NODE
                    19.00 TO NODE 19.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.38
 RAINFALL INTENSITY(INCH/HR) = 4.28
 TOTAL STREAM AREA(ACRES) = 1.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               3. 18
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 26.71 RAIN INTENSITY(INCH/HOUR) = 1.70
 TOTAL AREA(ACRES) = 327.74 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 26.71
 RAINFALL INTENSITY(INCH/HR) = 1.70
 TOTAL STREAM AREA(ACRES) = 327.74
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              261.16
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                 Tc
                        INTENSITY
                                    AREA
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
                                   (ACRE)
         3. 18 6. 38 4. 279
    1
                                    1. 18
         261. 16 26. 71
    2
                          1.699
                                    327.74
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
         (CFS)
              (MIN.) (INCH/HOUR)
    1
          65. 53
                6. 38
                       4. 279
         262. 42 26. 71
                        1. 699
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 262.42 Tc(MIN.) =
                                     26.71
 TOTAL AREA(ACRES) = 328.9
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                              597.00 FEET.
                                     19.00 =
******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.00 DOWNSTREAM(FEET) = 303.30
 FLOW LENGTH(FEET) = 726.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 69.0 INCH PIPE IS 53.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.15
 ESTIMATED PIPE DIAMETER(INCH) = 69.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 262.42
 PIPE TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) = 27.71
 LONGEST FLOWPATH FROM NODE
                       13.00 TO NODE
                                    16.00 =
                                            1323. 00 FEET.
***********************
 FLOW PROCESS FROM NODE
                    16.00 TO NODE
                                 16.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
_____
```

^{**} MAIN STREAM CONFLUENCE DATA **

```
STREAM
          RUNOFF
                           INTENSITY
                                       AREA
                   Tc
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
           262. 42
                   27.71
                           1. 659
                                       328.92
    1
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE 16.00 =
                                                  1323.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
         RUNOFF
                                       AREA
 STREAM
                   Tc
                           INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
    1
            8.17
                   10.12
                           3. 177
                                        3.62
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                          16.00 =
                                                     663.00 FEET.
 ** PEAK FLOW RATE TABLE **
         RUNOFF
                Tc
 STREAM
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.)
                           (INCH/HOUR)
          104.02
                    10.12
    1
                               3. 177
     2
          266.69
                    27.71
                               1.659
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 266.69 Tc(MIN.) =
                                         27.71
 TOTAL AREA(ACRES) =
                      332.5
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 12
 _____
 >>>> CLEAR MEMORY BANK # 2 <<<<
_____
 FLOW PROCESS FROM NODE 16.00 TO NODE
                                       20.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
 ELEVATION DATA: UPSTREAM(FEET) = 296.70 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 69.0 INCH PIPE IS 54.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.18
                                                                         Outfall of SD Line #1
 ESTIMATED PIPE DIAMETER(INCH) = 69.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 266.69
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
                                          27.89
 LONGEST FLOWPATH FROM NODE
                         13.00 TO NODE
                                           20.00 =
                                                    1460.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                       20.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
          RUNOFF Tc
                          INTENSITY
                                       AREA
           (CFS)
                         (I NCH/HOUR)
 NUMBER
                   (MIN.)
                                       (ACRE)
           266.69
                   27.89
                                       332.54
                            1. 652
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                          20.00 = 1460.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
          RUNOFF
 STREAM
                           INTENSITY
                   Tc
                                       AREA
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
                           1. 463
    1
          232.35
                   33.68
                                       184.17
 LONGEST FLOWPATH FROM NODE
                           300.00 TO NODE
                                          20.00 = 6578.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.)
                           (INCH/HOUR)
          459.09
                   27.89
                              1.652
     1
     2
          468.48
                    33.68
                              1.463
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 468.48 Tc(MIN.) =
                                          33.68
 TOTAL AREA(ACRES) =
                      516.7
```

FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12 >>>>CLEAR MEMORY BANK # 1 <<<<< _____ ************************ FLOW PROCESS FROM NODE 20.00 TO NODE 40.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 296.00 DOWNSTREAM(FEET) = 291.50 CHANNEL LENGTH THRU SUBAREA (FEET) = 859.50 CHANNEL SLOPE = 0.0052 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 468.48
FLOW VELOCITY(FEET/SEC.) = 6.41 FLOW DEPTH(FEET) = 3.25
TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 35.92 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 40.00 = 7437.50 FEET. ******************* FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 10 ______ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ______ ****************** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ *USER SPECIFIED(SUBAREA): DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00 UPSTREAM ELEVATION(FEET) = 318.40 317.70 DOWNSTREAM ELEVATION(FEET) = ELEVATION DIFFERENCE(FEET) = URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 63.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION! 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.599 SUBAREA RUNOFF(CFS) = 0.33TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = ************************ FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 62 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 2 USED) <<<< ______ UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 312.30 STREET LENGTH(FEET) = 393.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29HALFSTREET FLOOD WIDTH(FEET) = 8.29 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =

```
STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 8.44
     25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.572
   *USER SPECIFIED(SUBAREA):
  DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
  AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
  SUBAREA AREA(ACRES) = 1.25 SUBAREA RUNOFF(CFS) = 5.25 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 5.25 PEAK FLOW RATE(CFS) = 5.
  END OF SUBAREA STREET FLOW HYDRAULICS:
  DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.63
  FLOW VELOCITY(FEET/SEC.) = 2.74 DEPTH*VELOCITY(FT*FT/SEC.) = 0.93
  LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                                                   32.00 =
********************
  FLOW PROCESS FROM NODE 32.00 TO NODE 35.00 IS CODE = 31
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
  >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
  ELEVATION DATA: UPSTREAM(FEET) = 307.60 DOWNSTREAM(FEET) = 305.00
  FLOW LENGTH(FEET) = 265.00 MANNING'S N = 0.012
  ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
  DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 5.39
  ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                                         NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 3.42
  PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) =
                                                                     9.26
  LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                                                    35.00 =
  FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 1
 -----
  >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
-----
  TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
  TIME OF CONCENTRATION(MIN.) = 9.26
  RAINFALL INTENSITY(INCH/HR) = 3.36
  TOTAL STREAM AREA(ACRES) = 1.35
  PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                                          3.42
******************
  FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21
......
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
  *USER SPECIFIED(SUBAREA):
  DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
  INITIAL SUBAREA FLOW-LENGTH(FEET) =
  UPSTREAM ELEVATION(FEET) = 318.50
  DOWNSTREAM ELEVATION(FEET) = 317.80
ELEVATION DIFFERENCE(FEET) = 0.70
  URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
              THE MAXIMUM OVERLAND FLOW LENGTH = 63.00
               (Reference: Table 3-1B of Hydrology Manual)
              THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TO CALCULATION!
     25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.600
  SUBAREA RUNOFF(CFS) = 0.33
  TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*********************
  FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 62
 ______
  >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
  UPSTREAM ELEVATION(FEET) = 317.80 DOWNSTREAM ELEVATION(FEET) = 310.60
  STREET LENGTH(FEET) = 614.00 CURB HEIGHT(INCHES) = 6.0
  STREET HALFWIDTH(FEET) = 17.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       0.62
 STREET FLOW TRAVEL TIME(MIN.) = 4.72 Tc(MIN.) =
                                              10.42
   25 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.118
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.57
 TOTAL AREA(ACRES) = 1.3
                                PEAK FLOW RATE(CFS) =
                                                         2.79
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.09
 FLOW VELOCITY(FEET/SEC.) = 2.46 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE
                                        35.00 = 689.00 FEET.
                      35.00 TO NODE
 FLOW PROCESS FROM NODE
                                       35.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.118
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.42
******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.42
 RAINFALL INTENSITY(INCH/HR) = 3.12
 TOTAL STREAM AREA(ACRES) = 1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                    Tc
                            INTENSITY
                                         AREA
 NUMBER
           (CFS)
                    (MIN.) (INCH/HOUR)
                                        (ACRE)
    1
            3.42
                    9. 26
                           3. 365
                                          1.35
            4. 29
                                          1.94
     2
                   10.42
                              3.118
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
          RUNOFF Tc
 STREAM
                          INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                          (INCH/HOUR)
            7.24
    1
                   9. 26
                             3.365
     2
            7. 47
                 10. 42
                             3.118
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.47 Tc(MIN.) =
                                          10.42
```

```
TOTAL AREA(ACRES) = 3.3
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      35.00 =
                                                733, 00 FEET.
*******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 304.10
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.92
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.47
 PIPE TRAVEL TIME (MIN.) = 0.61 Tc (MIN.) = 11.03
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      36.00 =
                                               913.00 FFFT.
*********************
 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.005
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 1.04 SUBAREA RUNOFF(CFS) = 2.22
TOTAL AREA(ACRES) = 4.3 TOTAL RUNOFF(CFS) = 9.24
 TC(MIN.) = 11.03
 FLOW PROCESS FROM NODE 36.00 TO NODE 39.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 304.10 DOWNSTREAM(FEET) = 303.90
 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.90
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.24
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 11.12
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      39.00 =
                                               944.00 FEET.
**************************
 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1
  ______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.12
RAINFALL INTENSITY(INCH/HR) = 2.99
TOTAL STREAM AREA(ACRES) = 4.33
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                9. 24
*******************
 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 317.50
 DOWNSTREAM ELEVATION(FEET) = 315.70
 ELEVATION DIFFERENCE(FEET) =
                           1.80
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.541
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
```

```
NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.32
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.70 DOWNSTREAM ELEVATION(FEET) = 310.60
 STREET LENGTH(FEET) = 508.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61
 STREET FLOW TRAVEL TIME(MIN.) = 4.09 Tc(MIN.) =
                                                8.63
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.520
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.12
TOTAL AREA(ACRES) = 1.2
                               SUBAREA RUNOFF(CFS) = 2.80
                               PEAK FLOW RATE(CFS) = 3.02
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.79
 FLOW VELOCITY(FEET/SEC.) = 2.36 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81
 LONGEST FLOWPATH FROM NODE 37.00 TO NODE
                                          39.00 =
                                                    583.00 FEET.
********************
 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.63
 RAINFALL INTENSITY(INCH/HR) = 3.52
TOTAL STREAM AREA(ACRES) = 1.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    3.02
 ** CONFLUENCE DATA **
 STREAM
                    Tc
                            INTENSITY
        RUNOFF
                                         AREA
 NUMBER
           (CFS)
                    (MIN.) (INCH/HOUR)
                                         (ACRE)
            9. 24
                   11. 12
                            2. 990
                                           4.33
    1
     2
            3.02
                   8.63
                              3.520
                                           1.21
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                           INTENSITY
 NUMBER
           (CFS)
                           (INCH/HOUR)
                   (MIN.)
           10.87
    1
                   8.63
                             3.520
     2
           11.81
                11. 12
                             2.990
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

```
PEAK FLOW RATE(CFS) = 11.81 Tc(MIN.) = TOTAL AREA(ACRES) = 5.5
                                  11. 12
 LONGEST FLOWPATH FROM NODE
                      30.00 TO NODE
                                  39.00 =
                                          944.00 FEET.
************************
 FLOW PROCESS FROM NODE 39.00 \text{ TO NODE} 40.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.50 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 116.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.37
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                              NUMBER OF PIPES = 1
             11. 81
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                     30.00 TO NODE
                                  40.00 =
                                          1060, 00 FEET.
*******************
 FLOW PROCESS FROM NODE
                   40.00 TO NODE
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
      RUNOFF TC INTENSITY
                               ARFA
 NUMBER
        (CFS)
               (MIN.)
                      (INCH/HOUR)
                               (ACRE)
             11. 48 2. 929
   1
         11. 81
                               5. 54
                      30.00 TO NODE 40.00 = 1060.00 FEET.
 LONGEST FLOWPATH FROM NODE
 ** MEMORY BANK # 1 CONFLUENCE DATA **
      RUNOFF Tc
 STREAM
                     INTENSITY
                                AREA
 NUMBER
        (CFS)
               (MIN.)
                      (INCH/HOUR)
                               (ACRE)
        468. 48 35. 92
   1
                      1. 403
                               516.71
                      300.00 TO NODE 40.00 = 7437.50 FEET.
 LONGEST FLOWPATH FROM NODE
 ** PEAK FLOW RATE TABLE **
 STREAM
      RUNOFF Tc
                     INTENSITY
 NUMBER
        (CFS)
               (MIN.)
                      (INCH/HOUR)
        161. 50 11. 48
474. 14 35. 92
    1
                      2. 929
                        1.403
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 474.14 Tc(MIN.) = 35.92
 TOTAL AREA(ACRES) =
                  522. 2
*************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
_____
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE =
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 35.92
 RAINFALL INTENSITY(INCH/HR) = 1.40
 TOTAL STREAM AREA(ACRES) = 522.25
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************
 FLOW PROCESS FROM NODE
                  41.00 TO NODE
                               42.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
```

*USER SPECIFIED(SUBAREA):

```
NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 334.00
 DOWNSTREAM ELEVATION (FEET) = 314.00
 ELEVATION DIFFERENCE(FEET) =
                          20.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.927
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.006
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.41
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 301.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 521.00 CHANNEL SLOPE = 0.0250
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.217
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.35
 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 2.60
 Tc(MIN.) = 6.52
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.72
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
                           PEAK FLOW RATE(CFS) = 1.06
 TOTAL AREA(ACRES) = 0.4
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 3.76
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE
                                       43.00 =
******************
 FLOW PROCESS FROM NODE 43.00 TO NODE 40.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.00 DOWNSTREAM(FEET) = 300.50
 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.88
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
               1. 06
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 41.00 TO NODE
                                        7.10
                                        40.00 =
                                                 721.00 FEET.
*******************
 FLOW PROCESS FROM NODE 44.00 TO NODE 40.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.992
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.16
 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.10
***********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
```

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 7.10RAINFALL INTENSITY(INCH/HR) = 3.99

TOTAL STREAM AREA(ACRES) = 0.86

PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.16

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MI N.)	(INCH/HOUR)	(ACRE)
1	474. 14	35. 92	1. 403	522. 25
2	2. 16	7. 10	3. 992	0.86

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	95. 91	7. 10	3. 992
2	474. 90	35. 92	1. 403

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 474.90 Tc(MIN.) = TOTAL AREA(ACRES) = 523.1 35. 92

LONGEST FLOWPATH FROM NODE 300.00 TO NODE 40.00 = 7437.50 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 523.1 TC(MIN.) =35. 92

474. 90

END OF RATIONAL METHOD ANALYSIS

100-Year Proposed	Condition	Hydrology	Model

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL

2003, 1985, 1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes)

Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

* Cal * 100 * W. 0	rI ton 0a D-YEAR F D. 2167-	aks / Hydro RAINFALL EV -0228	***** DESCRIPTION C logy Analysis ENT *******					* *
TII	FILE NAME: R:\1759\HYD\DR\CALCS\AES\100PR.DAT TIME/DATE OF STUDY: 17:10 01/30/2024							
US	ER SPECI	FIED HYDRO	LOGY AND HYDRAULIC	MODEL I	NFORMATI	ON:		
		DIEGO MANUA	L CRI TERI A					
6-I SPI SAI NO *U:	HOUR DUF ECIFIED ECIFIED N DIEGO TE: USE SER-DEFI HALF- WIDTH (FT)	RATION PREC MINIMUM PI PERCENT OF HYDROLOGY MODIFIED R INED STREET CROWN TO CROSSFALL (FT)	EVENT(YEAR) = 100. IPITATION (INCHES) PE SIZE(INCH) = 18 GRADIENTS(DECIMAL) MANUAL "C"-VALUES U ATIONAL METHOD PROC -SECTIONS FOR COUPL STREET-CROSSFALL: IN- / OUT-/PARK- SIDE / SIDE/ WAY	= 2.45 3.00 TO USE ISED FOR CEDURES I .ED PIPEI CURB HEIGHT (FT)	FOR FRI RATIONA FOR CONF FLOW AND GUTTER- WIDTH (FT)	L METHO LUENCE STREET GEOMETO LIP (FT)	DD ANALYS TFLOW I RLES: HLKE (FT)	SIS MODEL* MANNING FACTOR (n)
1 2 3 4 5 6 GLU	30. 0 17. 0 20. 0 16. 0 26. 0 44. 0 DBAL STF 1. Rel at as (N 2. (Dept	20.0 10.0 12.0 10.0 18.0 12.0 REET FLOW-D tive Flow-D Maximum All th)*(Veloci E WITH A FL	0.018/0.018/0.020 0.020/0.020/0.020 0.020/0.020/0.020 0.020/0.020/0.020 0.020/0.020/0.020 0.020/0.020/0.020 EPTH CONSTRAINTS: epth = 0.50 FEET owable Street Flow ty) Constraint = 60 OW CAPACITY GREATER TREAM TRIBUTARY PIP	0.67 0.50 0.50 0.50 0.50 0.50 Depth) -	2.00 1.50 1.50 1.50 1.50 1.50	0. 0313 0. 0313 0. 0313 0. 0313 0. 0313 0. 0313	0. 167 0. 125 0. 125 0. 125 0. 125 0. 125	0. 0150 0. 0150 0. 0150 0. 0150 0. 0150 0. 0150
BE(GOLF RESORT					+
****	*****	*****	*****	****	*****	****	****	****
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21								
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS								
*U! COI I N UP! DOI	SER SPEC MMERCIAL ITIAL SU STREAM E WNSTREAN	CIFIED(SUBA _ AREA RUNO JBAREA FLOW ELEVATION(F M ELEVATION		3200		=		

```
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3. 293
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.48
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 320.30
 STREET LENGTH(FEET) = 317.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) = 11.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.89 STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) =
                                              5.42
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.127
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 6.43
 TOTAL AREA(ACRES) = 1.4
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.08
 FLOW VELOCITY(FEET/SEC.) = 2.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                       302.00 =
********************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.127
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.61
TOTAL AREA(ACRES) = 1.7 TOTAL RUNOFF(CFS) = 8.4
 TC(MIN.) = 5.42
******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.30 DOWNSTREAM(FEET) = 314.90
 FLOW LENGTH(FEET) = 1091.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.14
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.49
 PIPE TRAVEL TIME(MIN.) = 5.78 Tc(MIN.) =
                                        11. 20
                                                  1468.00 FEET.
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                         303.00 =
```

```
FLOW PROCESS FROM NODE 264.00 TO NODE
                                      264.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.20
RAINFALL INTENSITY(INCH/HR) = 3.84
TOTAL STREAM AREA(ACRES) = 1.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   8.49
*************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
 UPSTREAM ELEVATION(FEET) = 324.50
 DOWNSTREAM ELEVATION(FEET) = 323.50
ELEVATION DIFFERENCE(FEET) = 1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.293
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.37
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 321.30
 STREET LENGTH(FEET) = 293.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.38
   HALFSTREET FLOOD WIDTH(FEET) = 12.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.18
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.82 STREET FLOW TRAVEL TIME(MIN.) = 2.24 Tc(MIN.) =
                                               5.53
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.048
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 6.50 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 1.4
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.02
 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 353.00 FEET.
 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 81
______
```

```
100PR. OUT
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section =
                                                0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               1.55
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
 STREET FLOW TRAVEL TIME(MIN.) = 5.24 Tc(MIN.) =
                                            9.14
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.373
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.51
TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) =
                                                     2.69
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.30
 FLOW VELOCITY(FEET/SEC.) = 2.28 DEPTH*VELOCITY(FT*FT/SEC.) = 0.76
 LONGEST FLOWPATH FROM NODE 315.00 TO NODE
                                     317.00 = 697.00 FEET.
**********************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.373
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8200
 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 5
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          9. 14
*************
 FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.373
 *USER SPECIFIED(SUBAREA):
 SUBURBAN PROPERTY (RE) RUNOFF COEFFICIENT = .4100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7591
 SUBAREA AREA(ACRES) = 0.41 SUBAREA RUNOFF(CFS) = 0.74
 TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) = 9.16
 TC(MIN.) =
          9. 14
************************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.14
 RAINFALL INTENSITY(INCH/HR) = 4.37
 TOTAL STREAM AREA(ACRES) = 2.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 9.16
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
                        322.00
 DOWNSTREAM ELEVATION (FEET) = 315.00
7.00
```

URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =

5.740

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.905
 SUBAREA RUNOFF (CFS) = 0.14
 TOTAL AREA(ACRES) =
                      0.05 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 4 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.00 DOWNSTREAM ELEVATION(FEET) = 312.50
 STREET LENGTH(FEET) = 245.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) = 8.23
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.04
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.59 STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.) =
                                                7.74
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.870
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .4900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.490
 SUBAREA AREA(ACRES) = 1.23
                               SUBAREA RUNOFF(CFS) = 2.93
 TOTAL AREA(ACRES) =
                      1.3
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.80
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81
 LONGEST FLOWPATH FROM NODE 320.00 TO NODE
                                         322.00 =
***********************
 FLOW PROCESS FROM NODE 322.00 TO NODE 264.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 4
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.74
 RAINFALL INTENSITY(INCH/HR) = 4.87
 TOTAL STREAM AREA(ACRES) = 1.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    3.05
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                     Tc
                            INTENSITY
                                         AREA
 NUMBER
           (CFS)
                    (MIN.) (INCH/HOUR)
                                         (ACRE)
                          3.836
            8. 49 11. 20
                                           1.69
    1
     2
           13. 59
                   6.01
                              5.735
                                           2.74
     3
            9. 16
                    9.14
                              4.373
                                           2.76
            3.05
                    7.74
                              4.870
                                           1.28
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 4 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
           (CFS)
 NUMBER
                   (MIN.)
                           (INCH/HOUR)
           26. 53
                    6.01
                           5. 735
    1
     2
           28. 21
                    7.74
                             4.870
```

```
29. 19 9. 14
28. 02 11. 20
                            3.836
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 29.19 Tc(MIN.) =
                                         9 14
 TOTAL AREA(ACRES) =
                      8.5
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                        264.00 =
                                                 1468.00 FEET.
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 10
-----
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
| BEGINING OF ANALYSIS PA-2
 FLOW PROCESS FROM NODE 250.00 TO NODE 251.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 346.00
 DOWNSTREAM ELEVATION(FEET) = 344.70
ELEVATION DIFFERENCE(FEET) = 1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF (CFS) = 0.41
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 251.00 TO NODE 252.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 327.60
 STREET LENGTH(FEET) = 634.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.55
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                    1. 10
 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) =
                                              6.55
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.425
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.38
                             SUBAREA RUNOFF(CFS) = 5.91
 TOTAL AREA(ACRES) =
                       1.5
                                PEAK FLOW RATE(CFS) =
                                                       6.26
```

4. 373

END OF SUBARFA STREET FLOW HYDRAULICS:

3

```
DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.88
 FLOW VELOCITY(FEET/SEC.) = 4.09 DEPTH*VELOCITY(FT*FT/SEC.) = 1.49
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                   252.00 =
***********************
 FLOW PROCESS FROM NODE 252.00 TO NODE 252.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.425
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) =
                                          11. 23
 TC(MIN.) = 6.55
**********************
 FLOW PROCESS FROM NODE 252.00 TO NODE 257.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.60 DOWNSTREAM(FEET) = 318.10
 FLOW LENGTH(FEET) = 447.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.32
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.23
 PIPE TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) =
                                    7.56
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                   257.00 =
*********************
 FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 1
______
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.56
 RAINFALL INTENSITY(INCH/HR) = 4.94
 TOTAL STREAM AREA(ACRES) = 2.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.23
*******************
 FLOW PROCESS FROM NODE 253.00 TO NODE 254.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 331.30
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE (FEET) =
                         1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.39
 TOTAL AREA(ACRES) =
                0.08 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 254.00 TO NODE 255.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 330.00 DOWNSTREAM ELEVATION(FEET) = 325.90
 STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.42
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72
 STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) =
                                             5.94
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.778
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.760
 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 3.29
 TOTAL AREA(ACRES) = 0.8
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.95
 FLOW VELOCITY(FEET/SEC.) = 2.77 DEPTH*VELOCITY(FT*FT/SEC.) = 0.96
 LONGEST FLOWPATH FROM NODE 253.00 TO NODE 255.00 = 359.00 FEET.
******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 255.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.778
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 5.36
 TC(MIN.) =
            5.94
*******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 256.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 320.90 DOWNSTREAM(FEET) = 318.50
 FLOW LENGTH(FEET) = 326.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.44
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                5. 36
 PIPE TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 253.00 TO NODE
                                       6.94
                                       256.00 =
                                                 685. 00 FEET.
*******************
 FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.226
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600
 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) =
                                            7. 94
 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          6. 94
*******************
```

100PR. OUT FLOW PROCESS FROM NODE 256.00 TO NODE 256.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.226 *USER SPECIFIED(SUBAREA): DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7600 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7600 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 5.0 TOTAL RUNOFF(CFS) = 20.02 TC(MIN.) = 6.94******************* FLOW PROCESS FROM NODE 256.00 TO NODE 257.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 318.50 DOWNSTREAM(FEET) = 318.10 FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.012DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.47 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20. 02 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 7.14 LONGEST FLOWPATH FROM NODE 253.00 TO NODE 257.00 = FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 7.14 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 5.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.02 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY **AREA** (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) 7. 56 4. 942 1 11. 23 2.62 2 20.02 7. 14 5. 131 5.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** RUNOFF Tc STREAM INTENSITY NUMBER (CFS) (MIN.)(INCH/HOUR) 1 30. 61 7. 14 5.131 2 30. 51 7.56 4.942 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.61 Tc(MIN.) = TOTAL AREA(ACRES) = 7.7 7.14 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 257.00 = 1146.00 FEET. ********************* FLOW PROCESS FROM NODE 257.00 TO NODE 264.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< -----ELEVATION DATA: UPSTREAM(FEET) = 315.50 DOWNSTREAM(FEET) = 314.50 FLOW LENGTH(FEET) = 96.00 MANNING'S N = 0.012DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.8 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 9.30 ESTIMATED PIPE DIAMETER(INCH) = 27.00

NUMBER OF PIPES = 1
Page 10

```
PIPE-FLOW(CFS) = 30.61
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) =
                                          7.31
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                                 1242.00 FEET.
                                         264.00 =
**********************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.31
 RAINFALL INTENSITY(INCH/HR) = 5.05
TOTAL STREAM AREA(ACRES) = 7.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  30.61
*******************
 FLOW PROCESS FROM NODE 258.00 TO NODE 259.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 342.00
 DOWNSTREAM ELEVATION(FEET) = 341.00
ELEVATION DIFFERENCE(FEET) = 1.00
 ELEVATION DIFFERENCE (FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                      7.078
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH =
         (Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.159
 SUBAREA RUNOFF(CFS) = 0.19
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
                                                0.19
******************
 FLOW PROCESS FROM NODE 259.00 TO NODE 260.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 341.00 DOWNSTREAM(FEET) = 323.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 574.00 CHANNEL SLOPE = 0.0314
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.319
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.27
 AVERAGE FLOW DEPTH(FEET) = 0.14 TRAVEL TIME(MIN.) = 2.24
 Tc(MIN.) =
            9.32
 SUBAREA AREA(ACRES) =
                     0. 90
                               SUBAREA RUNOFF(CFS) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.555
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
                      1.0
                                                         2.30
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 5.36
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 260.00 =
                                                    674.00 FEET.
*********************
 FLOW PROCESS FROM NODE 260.00 TO NODE 264.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 314.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 151.00 CHANNEL SLOPE = 0.0596
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
```

```
CHANNEL FLOW THRU SUBAREA(CFS) = 2.30
FLOW VELOCITY(FEET/SEC.) = 1.99 FLOW DEPTH(FEET) = 0.07
 TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 10.58
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE
                                        264.00 =
                                                  825.00 FEET.
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.58
 RAINFALL INTENSITY(INCH/HR) = 3.98
 TOTAL STREAM AREA(ACRES) = 0.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  2.30
**********************
 FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 349.50
 DOWNSTREAM ELEVATION (FEET) = 347.50
 ELEVATION DIFFERENCE(FEET) =
                             2.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.006
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 80.00
         (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.735
 SUBAREA RUNOFF (CFS) = 0.36
 TOTAL AREA(ACRÈS) = 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 262.00 TO NODE 263.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 347.50 DOWNSTREAM ELEVATION(FEET) = 322.00
 STREET LENGTH(FEET) = 880.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.46
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.24 Tc(MIN.) =
                                            10. 24
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.065
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 SUBAREA AREA(ACRES) = 1.82
                             SUBAREA RUNOFF(CFS) = 4.66
 TOTAL AREA(ACRES) =
                       1. 9
                                PEAK FLOW RATE(CFS) =
                                                       4 92
```

END OF SUBAREA STREET FLOW HYDRAULICS:

```
FLOW VELOCITY(FEET/SEC.) = 3.92 DEPTH*VELOCITY(FT*FT/SEC.) = 1.40
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      263.00 =
***********************
 FLOW PROCESS FROM NODE 263.00 TO NODE 264.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.00 DOWNSTREAM(FEET) = 314.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 184.00 CHANNEL SLOPE = 0.0435
 CHANNEL BASE (FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 4.92
 FLOW VELOCITY(FEET/SEC.) = 2.54 FLOW DEPTH(FEET) = 0.12
 TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 11.45
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                      264.00 =
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.45
 RAINFALL INTENSITY(INCH/HR) =
                         3.78
 TOTAL STREAM AREA(ACRES) = 1.92
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                4. 92
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                   Tc
                         INTENSITY
                                     AREA
 NUMBER
                  (MIN.) (INCH/HOUR)
          (CFS)
                                     (ACRE)
                 7. 31
                       5.053
          30. 61
                                       7.66
    1
           2. 30 10. 58
    2
                           3.980
                                       0.96
    3
           4. 92 11. 45
                           3.783
                                       1.92
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                      (INCH/HOUR)
          35. 34
                 7. 31
                        5. 053
    1
    2
          30. 96 10. 58
                          3.980
    3
          30.02
               11. 45
                          3.783
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 35.34 Tc(MIN.) =
                                       7.31
 TOTAL AREA(ACRES) =
                     10.5
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE
                                      264.00 =
 FLOW PROCESS FROM NODE 264.00 TO NODE
                                   264.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF TC INTENSITY
                                   AREA
                        (I NCH/HOUR)
 NUMBER
          (CFS)
                 (MIN.)
                                   (ACRE)
          35.34
                  7. 31
                                   10.54
                          5.053
 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 264.00 = 1242.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF
                 Tc
                        INTENSITY
                                    AREA
 STREAM
          (CFS)
                 (MIN.)
 NUMBER
                        (INCH/HOUR)
                                   (ACRE)
                 9.14
          29.19
                         4. 373
                                    8.47
    1
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE
                                      264.00 =
                                               1468.00 FEET.
```

DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.90

```
** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                       INTENSITY
        (CFS) (MI N.)
58. 68 7. 31
59. 78 9. 14
                     (I NCH/HOUR)
 NUMBER
                       5. 053
    1
    2
                          4.373
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 59.78
                         Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    19.0
*******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 264.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 264.00 TO NODE 143.00 IS CODE = 51
   -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 304.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2044.00 CHANNEL SLOPE = 0.0049
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 59.78
FLOW VELOCITY(FEET/SEC.) = 3.23 FLOW DEPTH(FEET) = 1.03
TRAVEL TIME(MIN.) = 10.54 Tc(MIN.) = 19.69
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 143.00 = 38
*****************
 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 10
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 346.00
 DOWNSTREAM ELEVATION(FEET) = 344.70
 ELEVATION DIFFERENCE(FEET) =
                        1.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF (CFS) = 0.41
                  0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
********************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 62
...........
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 344.70 DOWNSTREAM ELEVATION(FEET) = 334.40
 STREET LENGTH(FEET) = 458.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.50 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.697
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA (ACRES) = 0.89 SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) = 1.0 PEAK FLOW RATE (CFS)
 TOTAL AREA(ACRES) =
                     1.0
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.63
 FLOW VELOCITY(FEET/SEC.) = 3.50 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 523.00 FEET.
 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 330.40 DOWNSTREAM(FEET) = 328.70
 FLOW LENGTH(FEET) = 168.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.81
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.37
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) =
                                        6.55
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                         203.00 =
                                                  691, 00 FFFT.
******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.423
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 5.01
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 9.1
 TC(MIN.) = 6.55
********************
 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 328.70 DOWNSTREAM(FEET) = 326.70
 FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.93
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 9. 17
 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                       204.00 =
**********************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.187
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) =
                                          4 34
 TOTAL AREA(ACRES) =
                3.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
********************
 FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 326.70 DOWNSTREAM(FEET) = 321.20
 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.66
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               13. 11
 PIPE TRAVEL TIME(MIN.) = 0.34
                         Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                  205.00 =
********************
 FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<**
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.029
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
******************
 FLOW PROCESS FROM NODE 205.00 TO NODE 211.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 321.20 DOWNSTREAM(FEET) = 316.60
 FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.86
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
              15. 34
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) =
                                   7.65
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                           1293.00 FEET.
                                   211.00 =
**********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE =
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.65
 RAINFALL INTENSITY(INCH/HR) = 4.91
 TOTAL STREAM AREA(ACRES) = 3.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             15.34
********************
 FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
```

INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00

```
UPSTREAM ELEVATION(FEET) = 337.40
 DOWNSTREAM ELEVATION(FEET) =
                           334.50
 ELEVATION DIFFERENCE(FEET) =
                            2.90
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.25
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 334.50 DOWNSTREAM ELEVATION(FEET) = 325.00
 STREET LENGTH(FEET) = 296.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  3.65
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.82
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
 STREET FLOW TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) =
                                              4.71
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA(ACRES) = 1.33 SUBAREA RUNOFF(CFS) = 6.78
 TOTAL AREA(ACRES) = 1.4
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.04
 FLOW VELOCITY(FEET/SEC.) = 4.49 DEPTH*VELOCITY(FT*FT/SEC.) = 1.65
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE 208.00 = 381.00 FEET.
*****************
 FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) =
                                                10. 91
 TC(MIN.) = 4.71
*********************
 FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 31
 -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 319.40
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012
```

DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.45
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 10.91
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) =
                                     5.08
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                    209.00 =
                                              501.00 FEET.
*****************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.392
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 5.08
********************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.392
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
*********************
 FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 319.40 DOWNSTREAM(FEET) = 317.50
 FLOW LENGTH(FEET) = 382.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.25
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 17. 52
 PIPE TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) =
                                    6. 10
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                    210.00 =
                                              883.00 FFFT.
**********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.681
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 1.22 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 6.10
*********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.681
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) =
                                           2.47
 TOTAL AREA(ACRES) =
                   5.2 TOTAL RUNOFF(CFS) =
                                           23. 52
```

TC(MIN.) = 6.10

```
FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 317.50 DOWNSTREAM(FEET) = 316.60
 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.26
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              23. 52
 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) =
                                     6.42
 LONGEST FLOWPATH FROM NODE 206.00 TO NODE
                                   211.00 =
                                            1024.00 FEET.
**********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.42
 RAINFALL INTENSITY(INCH/HR) = 5.49
 TOTAL STREAM AREA(ACRES) = 5.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                        INTENSITY
                                    AREA
 NUMBER
                 (MIN.) (INCH/HOUR)
         (CFS)
                                    (ACRE)
          15. 34 7. 65 4. 906
23. 52 6. 42 5. 494
    1
                                     3.86
    2
                                      5.24
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
 NUMBER
          (CFS) (MIN.)
                       (INCH/HOUR)
                          5. 494
    1
          36. 38 6. 42
          36. 33 7. 65
                          4.906
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 36.38 Tc(MIN.) =
                                    6. 42
 TOTAL AREA(ACRES) =
                     9. 1
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                     211.00 =
                                            1293.00 FFFT.
***********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 217.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) = 316.60 DOWNSTREAM(FEET) = 315.20
 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.91
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              36. 38
 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) =
                                     6.64
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                   217. 00 = 1425. 00 FEET.
**********************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
```

TOTAL NUMBER OF STREAMS = 2

```
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.64
 RAINFALL INTENSITY(INCH/HR) = 5.38
 TOTAL STREAM AREA(ACRES) = 9.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  36.38
*******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 333.70
 DOWNSTREAM ELEVATION(FEET) =
                         331.40
 ELEVATION DIFFERENCE(FEET) =
                            2.30
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF (CFS) = 0.41
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
***********
 FLOW PROCESS FROM NODE 213.00 TO NODE 217.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 331.40 DOWNSTREAM ELEVATION(FEET) = 320.80
 STREET LENGTH(FEET) = 523.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.05
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      0.94
 STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) =
                                              6.18
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.630
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.790
 SUBAREA AREA (ACRES) = 1.12 SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) - 1.2 PEAK FLOW RATE (CFS)
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      1. 2
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.80
 FLOW VELOCITY(FEET/SEC.) = 3.53 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                       217.00 =
**********************
 FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.630
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7900
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7900
 SUBAREA AREA(ACRES) = 0.62 SUBAREA RUNOFF(CFS) =
                                                2.76
```

```
TOTAL AREA(ACRES) =
                      1.8 TOTAL RUNOFF(CFS) =
                                                 8.10
 TC(MIN.) =
           6. 18
*****************
 FLOW PROCESS FROM NODE 217.00 TO NODE
                                    217.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.18
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  8.10
 ** CONFLUENCE DATA **
          RUNOFF
 STREAM
                    Tc
                          INTENSITY
                                       AREA
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)
           36.38
                   6.64
                            5.375
                                         9.10
    1
    2
           8. 10
                   6. 18
                             5.630
                                         1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                          INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                          (INCH/HOUR)
           42. 83 6. 18
    1
                            5.630
           44. 11
                  6.64
                            5.375
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 44.11 Tc(MIN.) = TOTAL AREA(ACRES) = 10.9
 LONGEST FLOWPATH FROM NODE
                         200.00 TO NODE
                                        217.00 =
                                                1425. 00 FEET.
*******************
 FLOW PROCESS FROM NODE 217.00 TO NODE
                                   217.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
***********************
 FLOW PROCESS FROM NODE 214.00 TO NODE 215.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
                           350.00
 ELEVATION DIFFERENCE(FEET) =
                            1.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
                                       70.00
         (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.159
 SUBAREA RUNOFF(CFS) = 0.49
                    0.15 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 330.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 228.00 CHANNEL SLOPE = 0.0877
```

CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000

```
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
                                         1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.897
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                           1. 58
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.38
 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
           7.67
 SUBAREA AREA(ACRES) =
                     0.71
                              SUBAREA RUNOFF(CFS) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.9
                           PEAK FLOW RATE(CFS) =
                                                      2.65
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 7.82
 LONGEST FLOWPATH FROM NODE 214.00 TO NODE 216.00 =
                                                 328.00 FEET.
*******************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.67
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 2.65
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
-----
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 21.43 RAIN INTENSITY(INCH/HOUR) = 2.52
 TOTAL AREA(ACRES) = 58.07 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.43
 RAINFALL INTENSITY (INCH/HR) = 2.52
 TOTAL STREAM AREA(ACRES) = 58.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                   Tc
                          INTENSITY
                                      AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
    1
           2.65
                  7.67
                           4.897
                                       0.86
    2
          80.00
                 21.43
                            2.525
                                       58.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                         (INCH/HOUR)
          31. 30
                           4.897
    1
                  7.67
          81. 37 21. 43
                           2.525
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 81.37 Tc(MIN.) =
                                       21.43
 TOTAL AREA(ACRES) =
                    58. 9
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                       216.00 =
                                                598.00 FEET.
```

100PR. OUT FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 31>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 326.90 DOWNSTREAM(FEET) = 315.20 FLOW LENGTH(FEET) = 551.00 MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.72 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 81.37PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) =22.05 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 217.00 = 1149.00 FEET. ****************** FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.479 *USER SPECIFIED(SUBAREA): NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5496 SUBAREA AREA(ACRES) = 2.03 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 61.0 TOTAL RUNOFF(CFS) = TC(MIN.) = 22.05FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 11 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY< ______ ** MAIN STREAM CONFLUENCE DATA ** RUNOFF TC INTENSITY STREAM **AREA** NUMBER (CFS) (MIN.)(INCH/HOUR) (ACRE) 1 83.05 22.05 2. 479 60. 96 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 217.00 = 1149.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** RUNOFF **AREA** STREAM Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 44.11 5. 375 10.92 6. 64 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 217.00 = 1425.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (MIN.) (INCH/HOUR) (CFS) 69.12 1 6.64 5. 375 2 103.39 22.05 2.479 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 103.39Tc(MIN.) =TOTAL AREA(ACRES) = 71.9 ******************* FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 12 ______ >>>> CLEAR MEMORY BANK # 2 <<<<< ______ ***************** FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< .-----

ELEVATION DATA: UPSTREAM(FEET) = 307.70 DOWNSTREAM(FEET) = 304.00 FLOW LENGTH(FEET) = 383.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.58

```
100PR. OUT
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               103. 39
 PIPE TRAVEL TIME(MIN.) = 0.55
                          Tc(MIN.) =
                                      22.60
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                      218.00 =
                                             1808. 00 FEET.
  *****************
 FLOW PROCESS FROM NODE 218.00 TO NODE
                                 218.00 IS CODE = 81
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.439
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5876
 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) =
                                             0.81
 TOTAL AREA(ACRES) =
                    72.3 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 22.60
******************
 FLOW PROCESS FROM NODE 218.00 TO NODE
  -----
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF Tc
                        INTENSITY
                                   AREA
 NUMBER
         (CFS)
                 (MIN.)
                        (I NCH/HOUR)
                                   (ACRE)
         103.58
                 22.60
    1
                        2.439
                                   72.26
 LONGEST FLOWPATH FROM NODE
                        200.00 TO NODE 218.00 = 1808.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF
 STREAM
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
    1
          59.78
                19. 69
                          2. 667
                                   19.01
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE
                                      218.00 =
                                               3512.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STRFAM
       RUNOFF
                        INTENSITY
               Tc.
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
         150.01
                 19. 69
                            2, 667
    2
         158. 27
                 22.60
                           2. 439
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
                           Tc(MIN.) =
 PEAK FLOW RATE(CFS) = 158.27
 TOTAL AREA(ACRES) =
                     91.3
*************************
 FLOW PROCESS FROM NODE 218.00 TO NODE
                                  218.00 IS CODE = 12
 >>>>CI FAR MFMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 218.00 TO NODE
                                  133.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 301.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 518.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 158.27
 FLOW VELOCITY(FEET/SEC.) = 4.52 FLOW DEPTH(FEET) = 1.79
 TRAVEL TIME(MIN.) = 1.91 Tc(MIN.) = 24.52
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      133.00 =
                                               4030.00 FEET.
 FLOW PROCESS FROM NODE 133.00 TO NODE
                                  133.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
```

```
FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 335.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                        7.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 1.10
                0.27 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
********************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 323.00 DOWNSTREAM(FEET) = 315.70
 CHANNEL LENGTH THRU SUBAREA(FEET) = 732.00 CHANNEL SLOPE = 0.0100
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.077
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.31
 AVERAGE FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
           7.26
 SUBAREA AREA(ACRES) = 1.66
                          SUBAREA RUNOFF(CFS) = 5.31
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 1.9
                          PEAK FLOW RATE(CFS) =
                                                6. 17
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 5.02
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 =
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
------
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.077
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          7. 26
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.26
 RAINFALL INTENSITY(INCH/HR) = 5.08
 TOTAL STREAM AREA(ACRES) = 2.37
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              7.58
*******************
```

FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 7

```
>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 9.91 RAIN INTENSITY(INCH/HOUR) = 4.15
 TOTAL AREA(ACRES) = 27.19 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.91
 RAINFALL INTENSITY(INCH/HR) = 4.15
TOTAL STREAM AREA(ACRES) = 27.19
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  73.41
 ** CONFLUENCE DATA **
 STREAM
          RUNOFF
                     Tc
                           INTENSITY
                                        AREA
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
                                       (ACRE)
            7.58
                   7. 26
                             5.077
                                         2.37
    1
                   9. 91
    2
           73. 41
                             4.152
                                         27.19
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF Tc
                          INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                          (INCH/HOUR)
           61.33
                 7. 26
    1
                            5.077
           79. 61
                  9. 91
    2
                            4.152
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 79.61 Tc(MIN.) =
                                          9.91
 TOTAL AREA(ACRES) = 29.6
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                         132.00 =
                                                   832.00 FEET.
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                     133.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
 .______
 ELEVATION DATA: UPSTREAM(FEET) = 307.40 DOWNSTREAM(FEET) = 301.40
 FLOW LENGTH(FEET) = 124.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.81
                                                                       Outfall of SD Line #4
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                    NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                79. 61
 PIPE TRAVÈL TÍME(MIN.) = 0.10 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                         133.00 =
                                                    956.00 FEET.
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.124
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6509
 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) =
                     29.9 TOTAL RUNOFF (CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 10.01
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11
```

```
** MAIN STREAM CONFLUENCE DATA **
                        INTENSITY
 STREAM
        RUNOFF Tc
                                   ARFA
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                   (ACRE)
               10. 01
          80.19
    1
                        4. 124
                                   29.87
 LONGEST FLOWPATH FROM NODE
                      130.00 TO NODE 133.00 =
                                               956.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                 (ACRE)
   1
         158. 27
                 24. 52
                        2. 315
                                   91.27
 LONGEST FLOWPATH FROM NODE
                        300.00 TO NODE 133.00 = 4030.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.)
144.84 10.01
203.28 24.52
 NUMBER
                        (INCH/HOUR)
    1
                           4. 124
                           2.315
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 203.28 Tc(MIN.) = 24.52
 TOTAL AREA(ACRES) =
                   121. 1
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
 FLOW PROCESS FROM NODE 133.00 TO NODE 128.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.40 DOWNSTREAM(FEET) = 299.80
 CHANNEL LENGTH THRU SUBAREA (FEET) = 311.00 CHANNEL SLOPE = 0.0051
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                             203.28
 FLOW VELOCITY(FEET/SEC.) = 4.94 FLOW DEPTH(FEET) = 2.05
 TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 25.57
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                    128.00 =
                                             4341, 00 FFFT.
***********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
  _____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .9000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
                        317.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                           9.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.76
 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
*******************
```

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 317.00 DOWNSTREAM(FEET) = 313.60
 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0101 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.40
 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 1.65
 Tc(MIN.) =
            3.38
 SUBAREA AREA(ACRES) =
                     0.50
                              SUBAREA RUNOFF(CFS) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.686
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                   0.6
                                                     2.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 3.92
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 =
                                                 436.00 FEET.
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6728
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 3.38
 RAINFALL INTENSITY(INCH/HR) = 6.46
 TOTAL STREAM AREA(ACRES) = 0.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 3.56
********************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE =
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 10.22 RAIN INTENSITY(INCH/HOUR) = 4.07
 TOTAL AREA(ACRES) = 3.81 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.22
 RAINFALL INTENSITY(INCH/HR) = 4.07
 TOTAL STREAM AREA(ACRES) = 3.81
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                10.53
```

Outfall of SD Line #3

```
** CONFLUENCE DATA **
 STREAM
          RUNOFF
                     Tc
                            INTENSITY
                                          AREA
                    (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
                                         (ACRE)
            3.56
                    3. 38
                             6. 455
                                           0.82
    1
     2
           10.53
                   10.22
                              4.070
                                           3.81
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF
                   Tc
                            INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
     1
            7.04
                    3. 38
                              6. 455
                              4.070
                   10.22
     2
           12.78
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 12.78 Tc(MIN.) =
                                          10.22
 TOTAL AREA(ACRES) =
                        4.6
 LONGEST FLOWPATH FROM NODE
                          212.00 TO NODE
                                          127.00 =
                                                      598.00 FEET.
 FLOW PROCESS FROM NODE 127.00 TO NODE
                                       128.00 IS CODE = 31
  ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
 _____
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 299.80
 FLOW LENGTH(FEET) = 146.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.58
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                     NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                    12. 78
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) =
                                          10.39
 LONGEST FLOWPATH FROM NODE
                          212.00 TO NODE
                                          128.00 =
                                                      744.00 FEET.
*******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.028
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6734
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                      5.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           10.39
********************
                     128.00 TO NODE
 FLOW PROCESS FROM NODE
                                       128.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
          RUNOFF
 STREAM
                 Tc
                           INTENSITY
                                        AREA
           (CFS)
 NUMBER
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
           13.86
                   10.39
     1
                              4.028
                                         5.11
 LONGEST FLOWPATH FROM NODE
                           212.00 TO NODE
                                         128.00 =
                                                     744.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
          RUNOFF
                            INTENSITY
                                        AREA
                    Tc
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
    1
          203.28
                   25.57
                              2. 253
                                       121.14
 LONGEST FLOWPATH FROM NODE
                           300.00 TO NODE 128.00 = 4341.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STRFAM
         RUNOFF
                Tc
                           INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
```

```
211.04
                 25. 57
                           2, 253
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 211.04 Tc(MIN.) =
                                     25.57
 TOTAL AREA(ACRES) =
                    126. 2
*******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
******************
 FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 299.80 DOWNSTREAM(FEET) = 296.40
 CHANNEL LENGTH THRU SUBAREA (FEET) = 678.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 211.04
FLOW VELOCITY(FEET/SEC.) = 4.95 FLOW DEPTH(FEET) = 2.11
TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) = 27.85
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                    113.00 = 5019.00 FEET.
******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10
-----
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
-----
********************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                          3.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.954
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) =
                 0.08 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 321.00 DOWNSTREAM(FEET) = 315.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 291.00 CHANNEL SLOPE = 0.0206
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.078
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.06
 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 1.59
 Tc(MIN.) =
           7. 25
 SUBAREA AREA(ACRES) =
                    0.30
                             SUBAREA RUNOFF(CFS) = 0.88
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.580
 TOTAL AREA(ACRES) =
                 0.4
                              PEAK FLOW RATE(CFS) = 1.12
```

1

96.45

10. 39

4.028

```
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.14 FLOW VELOCITY(FEET/SEC.) = 3.68
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                   112.00 =
                                               376.00 FEET.
***********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.078
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .5800
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5800
 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) =
                                            0.85
                                           1. 97
 TC(MIN.) = 7.25
**********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.25
 RAINFALL INTENSITY(INCH/HR) = 5.08
 TOTAL STREAM AREA(ACRES) = 0.67
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               1.97
***********************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 21.61 RAIN INTENSITY(INCH/HOUR) = 2.51
 TOTAL AREA(ACRES) = 54.44 TOTAL RUNOFF(CFS) = 79.21
******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.61
 RAINFALL INTENSITY (INCH/HR) = 2.51
 TOTAL STREAM AREA(ACRES) = 54.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               79.21
 ** CONFLUENCE DATA **
 STREAM
       RUNOFF
                  Tc
                         INTENSITY
                                    AREA
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
                                    (ACRE)
           1.97
    1
                 7. 25
                          5.078
                                     0.67
          79. 21
    2
                21. 61
                          2.511
                                     54.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
                 (MIN.)
          (CFS)
                       (INCH/HOUR)
          28. 56
                 7. 25
                          5.078
    1
          80. 19 21. 61
                          2.511
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 80.19 Tc(MIN.) = TOTAL AREA(ACRES) = 55.1
                                     21.61
                                               598.00 FEET.
 LONGEST FLOWPATH FROM NODE
                       212.00 TO NODE
                                     112.00 =
```

113.00 IS CODE = 31

Outfall of SD Line #2

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
 -----
 ELEVATION DATA: UPSTREAM(FEET) = 311.00 DOWNSTREAM(FEET) = 306.80
 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.26
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                  80. 19
 PIPE TRAVEL TIME(MIN.) = 0.25
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 212.00 TO NODE
                                       113.00 =
                                                  810.00 FEET.
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
 ** MAIN STREAM CONFLUENCE DATA **
          RUNOFF
 STREAM
                 Tc
                         INTENSITY
                                     AREA
 NUMBER
           (CFS)
                  (MIN.)
                                     (ACRE)
                         (INCH/HOUR)
           80.19
                  21.86
   1
                          2. 493
                                     55.11
 LONGEST FLOWPATH FROM NODE
                         212.00 TO NODE 113.00 =
                                                  810.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
          RUNOFF
 STREAM
                 Tc
                         INTENSITY
                                     AREA
 NUMBER
           (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
          211.04
                  27.85
    1
                           2. 132
                                    126. 25
                         300.00 TO NODE 113.00 =
 LONGEST FLOWPATH FROM NODE
                                                 5019.00 FEET.
 ** PEAK FLOW RATE TABLE **
         RUNOFF
               Tc
                         INTENSITY
 STREAM
 NUMBER
                  (MIN.)
         (CFS)
                         (INCH/HOUR)
                  21.86
    1
         245.82
                             2.493
    2
         279.62
                  27.85
                             2. 132
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 279.62 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                     181.4
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12
.......
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 113.00 TO NODE 105.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 306.80 DOWNSTREAM(FEET) = 300.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 585.00 CHANNEL SLOPE = 0.0116
 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 279.62
 FLOW VELOCITY(FEET/SEC.) = 7.21 FLOW DEPTH(FEET) = 1.95
 TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 29.20
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      105.00 =
******************
 FLOW PROCESS FROM NODE 105.00 TO NODE
                                    105.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.068
 *USER SPECIFIED(SUBAREA):
```

FLOW PROCESS FROM NODE 112.00 TO NODE

Page 32

```
PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6142
 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) =
                   181.8 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 29.20
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*****************
 FLOW PROCESS FROM NODE 105.00 \text{ TO NODE} 105.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.068
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6142
 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) =
                                             0.10
                   181.9 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 29.20
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
***********************
 FLOW PROCESS FROM NODE 105.00 TO NODE 20.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 300.00 DOWNSTREAM(FEET) = 295.10
 CHANNEL LENGTH THRU SUBAREA(FEET) = 974.00 CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 279.62
FLOW VELOCITY(FEET/SEC.) = 5.41 FLOW DEPTH(FEET) = 2.47
TRAVEL TIME(MIN.) = 3.00 Tc(MIN.) = 32.20
 LONGEST FLOWPATH FROM NODE
                      300.00 TO NODE
                                      20.00 = 6578.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                    20.00 TO NODE
                                   20.00 \text{ LS CODF} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.942
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6146
 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 182.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 32.20
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
***********************
                                  20.00 IS CODE = 81
                    20.00 TO NODE
 FLOW PROCESS FROM NODE
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.942
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8700
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6149
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) =
                   182.4 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 32.20
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
******************
 FLOW PROCESS FROM NODE
                     20.00 TO NODE 20.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
```

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

Page 33

```
RAINFALL INTENSITY(INCH/HR) = 1.94
 TOTAL STREAM AREA(ACRES) = 182.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
 UPSTREAM ELEVATION(FEET) = 324.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                           1.50
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                      6.169
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 77.65
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.637
 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 101.30 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 322.50 DOWNSTREAM(FEET) = 309.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 344.00 CHANNEL SLOPE = 0.0369
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.996
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.51
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
                            SUBAREA RUNOFF(CFS) = 2.05
 SUBAREA AREA(ACRES) = 0.65
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.7
                              PEAK FLOW RATE(CFS) =
                                                     2. 27
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 5.57
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 101.30 =
                                                429.00 FEET.
**********************
 FLOW PROCESS FROM NODE 101.30 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.00 DOWNSTREAM(FEET) = 305.00
 FLOW LENGTH(FEET) = 248.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.41
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 2. 27
 PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 =
*********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

TIME OF CONCENTRATION(MIN.) = 32.20

```
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.690
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 8.20
******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.690
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 8.20
***********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 218.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.28
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  5.38
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                       20.00 =
******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.59
 RAINFALL INTENSITY(INCH/HR) = 4.55
 TOTAL STREAM AREA(ACRES) = 1.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
       RUNOFF
                  Tc
 STREAM
                         INTENSITY
                                      AREA
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                     (ACRE)
    1
          279.62
                 32. 20 1. 942
                                      182.35
           5.38
                           4.551
    2
                  8. 59
                                       1.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                        INTENSITY
 NUMBER
          (CFS) (MIN.) (INCH/HOUR)
          80. 01
                 8. 59
    1
                         4. 551
         281. 92 32. 20
                           1.942
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 281.92 Tc(MIN.) = TOTAL AREA(ACRES) = 184.2
                                       32.20
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      20.00 = 6578.00 FEET.
```

100PR. OUT

```
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
 BEGINING OF ANALYSIS PA-1
********************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 318.50
 DOWNSTREAM ELEVATION(FEET) = 317.80
 ELEVATION DIFFERENCE(FEET) =
                            0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                       5.702
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 63.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.931
 SUBAREA RUNOFF(CFS) = 0.42
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.80 DOWNSTREAM ELEVATION(FEET) = 311.90
 STREET LENGTH(FEET) = 406.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.40
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.81 Tc(MIN.) =
                                              8.52
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.579
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                      0. 9
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.01
 FLOW VELOCITY(FEET/SEC.) = 2.70 DEPTH*VELOCITY(FT*FT/SEC.) = 0.88
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 481.00 FEET.
*********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 15.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 309.60 DOWNSTREAM(FEET) = 308.60
 FLOW LENGTH(FEET) = 108.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.09
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.02
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                        8.87
                                        15.00 =
                                                  589.00 FEET.
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.87
 RAINFALL INTENSITY (INCH/HR) = 4.46
 TOTAL STREAM AREA(ACRES) = 0.93
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 3.02
************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 318.40
                         317. 70
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
                                       63.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.931
 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 311.30
 STREET LENGTH(FEET) = 522.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 2.57
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) = 7.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.56
```

```
STREET FLOW TRAVEL TIME(MIN.) = 4.15 Tc(MIN.) = 9.85
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.169
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.43
                             SUBAREA RUNOFF(CFS) =
                                                4. 23
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                  1.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.15
 FLOW VELOCITY(FEET/SEC.) = 2.37 DEPTH*VELOCITY(FT*FT/SEC.) = 0.73
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 597.00 FEET.
*********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.85
 RAINFALL INTENSITY(INCH/HR) = 4.17
 TOTAL STREAM AREA(ACRES) = 1.53
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 4.53
 ** CONFLUENCE DATA **
        RUNOFF
 STREAM
                    Tc
                          INTENSITY
                                       AREA
 NUMBER
                   (MIN.) (INCH/HOUR)
           (CFS)
                                       (ACRE)
                   8. 87 4. 460
                                        0.93
    1
            3.02
            4.53
                   9.85
                             4. 169
                                         1.53
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
 NUMBER
           (CFS)
                  (MIN.)
                          (INCH/HOUR)
           7. 10 8. 87
                          4. 460
    1
           7. 35 9. 85
                            4.169
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.35 Tc(MIN.) = TOTAL AREA(ACRES) = 2.5
                                       9.85
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                        15.00 =
                                                  597.00 FEET.
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 308.60 DOWNSTREAM(FEET) = 303.30
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.23
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.35
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
                                         9.93
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                        16.00 =
**********************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.148
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
```

AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100

Page 38

```
SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 3.42
 TOTAL AREA(ACRES) = 3.6 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 10
-----
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE
                               18.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
 DOWNSTREAM ELEVATION(FEET) = 326.50
ELEVATION DIFFERENCE(FEET) = 5.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.41
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 315.00 DOWNSTREAM(FEET) = 306.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 385.00 CHANNEL SLOPE = 0.0234
 CHANNEL BASE (FEET) = 1.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.593
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.95
 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.30
 Tc(MIN.) =
          6.24
                         SUBAREA RUNOFF(CFS) = 2.26
 SUBAREA AREA(ACRES) = 0.64
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) =
                                              2. 61
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 FLOW VELOCITY(FEET/SEC.) = 5.71
 LONGEST FLOWPATH FROM NODE 17.00 TO NODE 19.00 =
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.593
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 1.55
 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 6.24
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
```

TOTAL NUMBER OF STREAMS = 2

Page 39

```
TIME OF CONCENTRATION(MIN.) = 6.24
 RAINFALL INTENSITY(INCH/HR) = 5.59
 TOTAL STREAM AREA(ACRES) = 1.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               4. 16
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE =
 ______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
-----
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 25.61 RAIN INTENSITY(INCH/HOUR) = 2.25
 TOTAL AREA(ACRES) = 327.74 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 1
 >>>> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.61
 RAINFALL INTENSITY(INCH/HR) = 2.25
 TOTAL STREAM AREA(ACRES) = 327.74
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            405.36
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                        INTENSITY
                                    AREA
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                   (ACRE)
                6. 24 5. 593
25. 61 2. 251
    1
         4. 16
                                    1. 18
         405.36
                25.61
    2
                          2. 251
                                    327.74
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
         (CFS) (MIN.)
                       (INCH/HOUR)
         102. 98 6. 24
    1
                         5.593
         407. 03 25. 61
                         2.251
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 407.03 Tc(MIN.) = 25.61
 TOTAL AREA(ACRES) =
                   328. 9
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                    19.00 =
                                             597. 00 FEET.
******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.00 DOWNSTREAM(FEET) = 303.30
 FLOW LENGTH(FEET) = 726.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 81.0 INCH PIPE IS 63.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.53
 ESTIMATED PIPE DIAMETER(INCH) = 81.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 407.03
 PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) =
                                    26.50
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                    16.00 =
                                            1323. 00 FEET.
*****************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
```

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

STREAM RUNOFF TO INTENSITY

ARFA

(ACRE)

NUMBER

(CFS)

FLOW PROCESS FROM NODE

(MIN.)

(INCH/HOUR)

```
407.03
                   26.50
                             2. 201
                                       328.92
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                        16.00 =
                                                    1323.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM
          RUNOFF
                    Tc
                           INTENSITY
                                       AREA
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
                    9.93
    1
           10.66
                            4. 148
                                        3.62
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                          16.00 =
                                                     663.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                   Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.)
                           (INCH/HOUR)
    1
          163. 11
                    9. 93
                               4. 148
    2
          412.69
                    26. 50
                               2.201
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 412.69
                              Tc(MIN.) =
                                          26.50
 TOTAL AREA(ACRES) =
                      332.5
*******************
 FLOW PROCESS FROM NODE
                        16.00 TO NODE
                                       16.00 IS CODE = 12
 ______
 >>>>CLEAR MEMORY BANK # 2 <<<<
_____
 FLOW PROCESS FROM NODE
                        16.00 TO NODE
                                       20.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
 -----
 ELEVATION DATA: UPSTREAM(FEET) = 296.70 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 81.0 INCH PIPE IS 64.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.56
                                                                         Outfall of SD Line #1
 ESTIMATED PIPE DIAMETER(INCH) = 81.00
                                     NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                   412.69
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) =
                                          26, 67
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                           20.00 =
                                                    1460.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                      20.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
          RUNOFF TC INTENSITY
                                       ARFA
                   (MIN.)
 NUMBER
           (CFS)
                           (INCH/HOUR)
                                       (ACRE)
    1
          412.69
                   26.67
                            2. 192
                                       332.54
 LONGEST FLOWPATH FROM NODE
                                          20.00 =
                           13.00 TO NODE
                                                    1460.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
          RUNOFF
 STREAM
                   Tc
                           INTENSITY
                                       AREA
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
          281.92
                   32. 20
                                       184.17
    1
                            1. 942
 LONGEST FLOWPATH FROM NODE
                           300.00 TO NODE
                                           20.00 =
                                                    6578.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                 Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.)
                           (INCH/HOUR)
    1
          646. 19
                    26.67
                               2.192
    2
          647.38
                    32.20
                               1.942
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 647.38 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                      516.7
```

20.00 IS CODE = 12 Page 41

20.00 TO NODE

```
>>>> CLEAR MEMORY BANK # 1 <<<<<
_____
 ********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 40.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.00 DOWNSTREAM(FEET) = 291.50
 CHANNEL LENGTH THRU SUBAREA(FEET) = 859.50 CHANNEL SLOPE = 0.0052
 CHANNEL BASE (FEET) = 16.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 647.38
 FLOW VELOCITY(FEET/SEC.) = 7.04 FLOW DEPTH(FEET) =
 TRAVEL TIME(MIN.) = 2.03 Tc(MIN.) = 34.24
LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      40.00 =
*******************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
.....
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
 UPSTREAM ELEVATION(FEET) = 318.40
                        317. 70
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.702
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 63.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.931
 SUBAREA RUNOFF (CFS) = 0.42
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.70 DOWNSTREAM ELEVATION(FEET) = 312.30
 STREET LENGTH(FEET) = 393.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
  STREET FLOW DEPTH(FEET) = 0.31
  HALFSTREET FLOOD WIDTH(FEET) =
                            9.30
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80
 STREET FLOW TRAVEL TIME(MIN.) = 2.57 Tc(MIN.) =
                                          8.27
```

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.665
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.25 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.96
 FLOW VELOCITY(FEET/SEC.) = 2.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 468.00 FEET.
********************
 FLOW PROCESS FROM NODE 32.00 TO NODE 35.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 307.60 DOWNSTREAM(FEET) = 305.00
 FLOW LENGTH(FEET) = 265.00 MANNING'S N = 0.012
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.78
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.47
 PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) =
                                        9 04
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                        35.00 =
                                               733. 00 FEET.
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE =
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
-----
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.04
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 1.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                4.47
******************
 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 318.50
 DOWNSTREAM ELEVATION(FEET) = 317.80
 ELEVATION DIFFERENCE(FEET) =
                           0.70
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH =
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.931
 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 317.80 DOWNSTREAM ELEVATION(FEET) = 310.60
 STREET LENGTH(FEET) = 614.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
```

DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00

```
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    2.14
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.30
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
 STREET FLOW TRAVEL TIME(MIN.) = 4.44 Tc(MIN.) =
                                                10. 14
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.090
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.16
                               SUBAREA RUNOFF(CFS) = 3.37
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
                                                          3.66
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.34
 FLOW VELOCITY(FEET/SEC.) = 2.61 DEPTH*VELOCITY(FT*FT/SEC.) = 0.92
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE
                                         35.00 = 689.00 FEET.
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
 -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.090
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.14
*******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.14
 RAINFALL INTENSITY(INCH/HR) = 4.09
 TOTAL STREAM AREA(ACRES) =
                            1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     5.63
 ** CONFLUENCE DATA **
         RUNOFF
 STREAM
                      Tc
                            INTENSITY
                                          AREA
 NUMBER
           (CFS)
                    (MI N.)
                            (INCH/HOUR)
                                         (ACRE)
            4.47
                    9.04
                              4.407
                                            1.35
    1
     2
            5.63
                   10. 14
                              4.090
                                            1.94
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF
                  Tc
                            INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
     1
            9.49
                    9.04
                              4.407
     2
            9. 78
                 10. 14
                              4.090
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.78 Tc(MIN.) =
                                           10.14
```

TOTAL AREA(ACRES) =

3.3

Page 44

```
100PR. OUT
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                     35.00 =
                                              733.00 FEET.
*******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 304.10
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.38
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               9. 78
 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                    36.00 =
***********************
 FLOW PROCESS FROM NODE
                    36.00 TO NODE 36.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.951
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7100
 SUBAREA AREA(ACRES) = 1.04 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.3 TOTAL RUNOFF(CFS) =
                                           2.92
 TC(MIN.) = 10.70
************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 39.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 304.10 DOWNSTREAM(FEET) = 303.90
 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.18
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 12. 15
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.78
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                     39.00 =
```

FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 ______

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

______ TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.78 RAINFALL INTENSITY(INCH/HR) = 3.93 TOTAL STREAM AREA(ACRES) = 4.33

PEAK FLOW RATE(CFS) AT CONFLUENCE = 12. 15

FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21 ______

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

*USER SPECIFIED(SUBAREA): DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 317.50 DOWNSTREAM ELEVATION(FEET) = 315.70 ELEVATION DIFFERENCE(FEET) = 1.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =

100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.455 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.

```
SUBAREA RUNOFF(CFS) =
                       0. 41
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 2 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 315.70 DOWNSTREAM ELEVATION(FEET) = 310.60
 STREET LENGTH(FEET) = 508.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 17.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    2.29
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.19
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70
 STREET FLOW TRAVEL TIME(MIN.) = 3.86 Tc(MIN.) =
                                                8.40
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.619
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2, R3) RUNOFF COEFFICIENT = .7100
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.710
 SUBAREA AREA(ACRES) = 1.12
TOTAL AREA(ACRES) = 1.2
                               SUBAREA RUNOFF(CFS) = 3.67
 TOTAL AREA(ACRES) = 1.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.12
 FLOW VELOCITY(FEET/SEC.) = 2.50 DEPTH*VELOCITY(FT*FT/SEC.) = 0.92
 LONGEST FLOWPATH FROM NODE
                           37.00 TO NODE
                                           39.00 =
 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.40
 RAINFALL INTENSITY(INCH/HR) = 4.62
 TOTAL STREAM AREA(ACRES) = 1.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    3.97
 ** CONFLUENCE DATA **
                    Tc
 STREAM
        RUNOFF
                           INTENSITY
                                         AREA
 NUMBER
                    (MIN.) (INCH/HOUR)
           (CFS)
                                         (ACRE)
    1
           12.15
                   10. 78 3. 932
                                           4.33
            3.97
                   8.40
                              4.619
     2
                                           1.21
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
          RUNOFF Tc
 STREAM
                           INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
           14. 31
                   8.40
                           4. 619
    1
     2
           15. 53 10. 78
                              3.932
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 15.53 Tc(MIN.) =
                                          10.78
```

Page 46

```
TOTAL AREA(ACRES) =
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                   39.00 =
                                            944.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                    39.00 TO NODE 40.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 296.50 DOWNSTREAM(FEET) = 296.00
 FLOW LENGTH(FEET) = 116.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                        5.76
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.53
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) =
                                  11. 12
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                   40.00 =
                                           1060.00 FEET.
************************
 FLOW PROCESS FROM NODE
                   40.00 TO NODE
                               40.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
                (MIN.)
 NUMBER
         (CFS)
                     (INCH/HOUR)
                                (ACRE)
         15. 53
               11. 12
   1
                       3.855
                                 5.54
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                  40.00 = 1060.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
        RUNOFF
 STREAM
                Tc
                      INTENSITY
                                AREA
 NUMBER
         (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         647.38
              34. 24
   1
                       1. 866
                                516.71
 LONGEST FLOWPATH FROM NODE
                      300.00 TO NODE
                                   40.00 = 7437.50 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF
              Tc
                      INTENSITY
 NUMBER
        (CFS)
                (MIN.)
                      (INCH/HOUR)
    1
        225.80
               11. 12
                         3.855
        654.90
               34. 24
                         1.866
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 654.90
                         Tc(MIN.) =
 TOTAL AREA(ACRES) =
                  522.2
*************************
 FLOW PROCESS FROM NODE 40.00 TO NODE
                               40.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 40.00 TO NODE
                               40.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 34.24
 RAINFALL INTENSITY(INCH/HR) = 1.87
 TOTAL STREAM AREA(ACRES) = 522.25
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                           654.90
**********************
 FLOW PROCESS FROM NODE
                   41.00 TO NODE
                               42.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) =
                         334.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                          20.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.455
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.53
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 314.00 DOWNSTREAM(FEET) = 301.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 521.00 CHANNEL SLOPE = 0.0250
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.587
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.73
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 2.33
 Tc(MIN.) =
            6.25
 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.95
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
                          PEAK FLOW RATE(CFS) = 1.41
 TOTAL AREA(ACRES) = 0.4
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 4.20
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 43.00 = 621.00 FEET.
******************
 FLOW PROCESS FROM NODE 43.00 TO NODE 40.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 301.00 DOWNSTREAM(FEET) = 300.50
 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.12
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.41
 PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 41.00 TO NODE
                                      6.79
                                       40.00 =
*******************
 FLOW PROCESS FROM NODE 44.00 TO NODE 40.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.299
 *USER SPECIFIED(SUBAREA):
 NORMAL RESIDENTIAL (R1) RUNOFF COEFFICIENT = .6300
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.54
TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 2.8
 TC(MIN.) = 6.79
*********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<
```

TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.79 RAINFALL INTENSITY(INCH/HR) = 5.30 TOTAL STREAM AREA(ACRES) = 0.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.87

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MI N.)	(INCH/HOUR)	(ACRE)
1	654. 90	34. 24	1.866	522. 25
2	2.87	6. 79	5. 299	0.86

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	132. 75	6. 79	5. 299
2	655. 91	34. 24	1. 866

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 655.91 Tc(MIN.) = 34.24

TOTAL AREA(ACRES) = 523.1

LONGEST FLOWPATH FROM NODE 300.00 TO NODE 7437.50 FEET. 40.00 =

END OF STUDY SUMMARY:

523.1 TC(MIN.) =34. 24

TOTAL AREA(ACRES) = 523.1 PEAK FLOW RATE(CFS) = 655.91

______ ______

END OF RATIONAL METHOD ANALYSIS

STREAM STATS
REPORTS TO
CACULATE THE AREA
OF THE MAIN STEM

4/26/23, 3:18 PM StreamStats

StreamStats Report

Region ID:

Workspace ID: CA20230426221609201000

Clicked Point (Latitude, Longitude): 32.84141, -117.01133

Time: 2023-04-26 15:16:33 -0700 AREA OF THE MAIN STEM AT NODE 218

Collapse All

> Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	339.4	square miles
ELEVMAX	Maximum basin elevation	6492	feet
LFPLENGTH	Length of longest flow path	40	miles

4/26/23, 3:18 PM StreamStats

Parameter Code	Parameter Description	Value	Unit
MINBELEV	Minimum basin elevation	311	feet
PRECIP	Mean Annual Precipitation	21.1	inches

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [2012 5113 Region 5 South Coast]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	339.4	square miles	0.04	850
PRECIP	Mean Annual Precipitation	21.1	inches	10	45

Peak-Flow Statistics Flow Report [2012 5113 Region 5 South Coast]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	ASEp
50-percent AEP flood	1800	ft^3/s	331	9790	134
20-percent AEP flood	7870	ft^3/s	2350	26300	83.1
10-percent AEP flood	16400	ft^3/s	6150	43700	64
4-percent AEP flood	33600	ft^3/s	14800	76100	51.5
2-percent AEP flood	52200	ft^3/s	24500	111000	47.6
1-percent AEP flood	75200	ft^3/s	35100	161000	47.2
0.5-percent AEP flood	105000	ft^3/s	48400	228000	47.7
0.2-percent AEP flood	149000	ft^3/s	65400	340000	52

Peak-Flow Statistics Citations

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles, 2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report 2012-5113, 38 p., 1 pl. (http://pubs.usgs.gov/sir/2012/5113/)

4/26/23, 3:18 PM StreamStats

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected.

Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.14.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

4/19/23, 12:11 PM StreamStats

StreamStats Report

Region ID: CA

Workspace ID: CA20230419191028196000

Clicked Point (Latitude, Longitude): 32.83847, -117.02293

Time: 2023-04-19 12:10:51 -0700

AREA OF THE MAIN STEM AT NODE 20

Collapse All

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [2012 5113 Region 5 South Coast]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	367.5	square miles	0.04	850
PRECIP	Mean Annual Precipitation	20.6	inches	10	45

4/19/23, 12:11 PM StreamStats

Peak-Flow Statistics Flow Report [2012 5113 Region 5 South Coast]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	ASEp
50-percent AEP flood	1860	ft^3/s	341	10100	134
20-percent AEP flood	8170	ft^3/s	2440	27400	83.1
10-percent AEP flood	17000	ft^3/s	6370	45400	64
4-percent AEP flood	34800	ft^3/s	15400	78900	51.5
2-percent AEP flood	54000	ft^3/s	25300	115000	47.6
1-percent AEP flood	77700	ft^3/s	36200	167000	47.2
0.5-percent AEP flood	108000	ft^3/s	49700	235000	47.7
0.2-percent AEP flood	154000	ft^3/s	67500	352000	52

Peak-Flow Statistics Citations

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles, 2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report 2012–5113, 38 p., 1 pl. (http://pubs.usgs.gov/sir/2012/5113/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected.

Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.14.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Exhibit B

Public Storm Drain – Hydraflow Express Bypass System 100-Year Rip-rap Sizing

PLEASE SEE DRAINAGE EXHIBITS 1, 2, 5, AND 6 FOR STORM DRAIN LINE PLAN VIEW AND ID#

$$H_L = K_c \left(\frac{v_2^2 - v_1^2}{2g} \right) \tag{3-15}$$

where ...

 K_c = contraction loss coefficient (0.5 K_e or Table 3-7)

 v_1, v_2 = upstream and downstream flow velocity, respectively (ft/s);

g = gravitational acceleration (32.2 ft/s²)

Table 3-7 Contraction Loss Coefficients Under Open Channel Conditions									
D ₂ /D ₁	Contraction Loss Coefficient, K _c								
approaching 0	0.5								
0.4	0.4								
0.6	0.3								
0.8	0.1								
1.0	0.0								

Expansion Losses – Pressure Flow

Expansion of the flow area in a storm drain under submerged conditions will result in a shearing action between the incoming high velocity jet and the surrounding conduit boundary. As a result, eddy currents and turbulence dissipate much of the kinetic energy. The head loss is expressed as:

$$H_L = K_E \frac{v_1^2}{2g} {(3-16)}$$

where ...

 v_1 = upstream flow velocity (ft/s);

 K_E = expansion loss coefficient, pressure flow (Table 3-8 and Table 3-9).

The value of the expansion loss coefficient (K_E) varies from approximately 1.0 for a sudden expansion to 0.2 for a well-designed expansion transition. Table 3-8 and Table 3-9 present loss coefficients for pressure flow conditions for sudden and gradual expansions, respectively.

SD LINE #1 25-YR TAILWATER WSEL (25-YR BSI was not available, 50-YR FEMA WSEL was used instead and is being referred to as the "25-YR TAILWATER WSEL"):

HEC-RAS NODE DOWNSTREAM = 250, ELEVATION = 304.98'
HEC-RAS NODE UPSTREAM = 260, ELEVATION = 307.19'
DISTANCE BETWEEN HEC-RAS NODES = 1031'
DISCTANCE FROM DOWNSTREAM NODE = 250'
25-YR WSEL = 305.52'

SD LINE #1 100-YR TAILWATER WSEL:

HEC-RAS NODE DOWNSTREAM = 250, ELEVATION = 311.00' HEC-RAS NODE UPSTREAM = 260, ELEVATION = 312.61' DISTANCE BETWEEN HEC-RAS NODES = 1031' DISCTANCE FROM DOWNSTREAM NODE = 250' 100-YR WSEL = 311.39'

SD LINE #2 100-YR TAILWATER WSEL:

HEC-RAS NODE DOWNSTREAM = 270, ELEVATION = 314.99'
HEC-RAS NODE UPSTREAM = 280, ELEVATION = 316.44'
DISTANCE BETWEEN HEC-RAS NODES = 1021'
DISCTANCE FROM DOWNSTREAM NODE = 233'
100-YR WSEL = 315.32'

SD LINE #3 100-YR TAILWATER WSEL:

HEC-RAS NODE DOWNSTREAM = 270, ELEVATION = 314.99'
HEC-RAS NODE UPSTREAM = 280, ELEVATION = 316.44'
DISTANCE BETWEEN HEC-RAS NODES = 1021'
DISCTANCE FROM DOWNSTREAM NODE = 623'
100-YR WSEL = 315.87'

SD LINE #4 100-YR TAILWATER WSEL:

HEC-RAS NODE = 280, ELEVATION = 316.44' 100-YR WSEL = 316.44'

SD LINE #5 10-YR TAILWATER WSEL:

HEC-RAS NODE DOWNSTREAM = 280, ELEVATION = 307.68' HEC-RAS NODE UPSTREAM = 285, ELEVATION = 308.88' DISTANCE BETWEEN HEC-RAS NODES = 446' DISCTANCE FROM DOWNSTREAM NODE = 688' 10-YR WSEL = 308.49'

SD LINE #5 100-YR TAILWATER WSEL:

HEC-RAS NODE DOWNSTREAM = 280, ELEVATION = 316.44'
HEC-RAS NODE UPSTREAM = 285, ELEVATION = 316.83'
DISTANCE BETWEEN HEC-RAS NODES = 446'
DISCTANCE FROM DOWNSTREAM NODE = 688'
100-YR WSEL = 316.70'

50-Year FEMA (used as 25-Year tailwater as a conservative approach for SD Line-1)

HEC-RAS Plan: Plan 01 River: San Diego River Reach: Reach 1 Profile: PF 5

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	220	PF 5	19000.00	288.80	300.76	294.29	300.84	0.000468	2.02	8671.03	1604.48	0.12
Reach 1	230	PF 5	19000.00	289.80	301.03	296.06	301.19	0.001218	3.17	5991.57	1261.34	0.20
Reach 1	239	PF 5	19000.00	290.70	301.65	297.86	301.94	0.002182	4.20	4413.12	1121.95	0.26
Reach 1	242	PF 5	19000.00	291.70	302.17	297.28	302.55	0.002718	4.92	3858.19	456.59	0.30
Reach 1	243		Bridge									
Reach 1	244	PF 5	19000.00	292.20	302.68	297.44	303.00	0.002194	4.53	4194.57	680.98	0.27
Reach 1	245	PF 5	19000.00	291.03	303.25	299.03	303.49	0.005356	3.99	4866.45	747.85	0.26
Reach 1	250	PF 5	19000.00	294.72	304.98		305.24	0.001451	4.15	4712.45	726.26	0.27
Reach 1	260	PF 5	19000.00	295.59	307.19		307.69	0.004230	5.68	3391.52	606.68	0.41
Reach 1	270	PF 5	17000.00	297.09	309.72	305.41	310.01	0.001495	4.31	3975.48	597.35	0.29
Reach 1	280	PF 5	17000.00	298.83	311.06		311.15	0.000838	2.46	6923.94	1414.94	0.20
Reach 1	285	PF 5	17000.00	301.64	311.69	308.76	311.83	0.001130	2.97	5720.73	1404.16	0.26
Reach 1	290	PF 5	17000.00	301.71	312.39	309.38	312.52	0.000996	2.92	5813.70	1506.19	0.25
Reach 1	300	PF 5	16311.79	305.19	313.16	310.14	313.33	0.001542	3.31	4952.59	1218.04	0.27
Reach 1	310	PF 5	16311.79	305.25	313.88	310.72	314.38	0.001577	5.72	3129.69	1142.73	0.40
Reach 1	315	PF 5	16311.79	307.53	314.33	313.87	315.45	0.008742	8.73	2020.45	1062.65	0.85
Reach 1	320	PF 5	16311.79	307.20	316.20	312.27	316.46	0.000964	4.08	3998.74	1288.00	0.31
Reach 1	322		Lat Struct									
Reach 1	330	PF 5	16000.00	308.50	316.87	314.60	317.18	0.001522	4.54	3703.58	902.74	0.37
Reach 1	340	PF 5	16000.00	309.90	317.73	314.16	317.92	0.001638	3.43	4667.79	1011.04	0.27
Reach 1	345	PF 5	16000.00	309.80	318.22	314.19	318.40	0.001260	3.38	4732.60	816.11	0.25
Reach 1	355	PF 5	16000.00	311.40	318.63	315.25	318.91	0.001975	4.21	3799.89	911.43	0.31

Line 1

100-Year BSI Flows

HEC-RAS Plan: Plan 01 River: San Diego River Reach: Reach 1 Profile: PF 3

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	220	PF 3	50000.00	288	307.13	297.37	307.28	0.000362	2.60	17024.01	1773.44	0.12
Reach 1	230	PF 3	50000.00	289.80	307.28	299.08	307.57	0.000870	3.94	12310.10	1545.51	0.18
Reach 1	239	PF 3	50000.00	290.70	307.63	300.56	308.19	0.001760	5.46	8514.67	1224.73	0.26
Reach 1	242	PF 3	50000.00	291.70	308.02	300.88	308.91	0.003408	7.56	6614.34	485.40	0.36
Reach 1	243		Bridge									
Reach 1	244	PF 3	50000.00	292.20	308.81	300.87	309.55	0.002637	6.93	7210.64	964.85	0.32
Reach 1	245	PF 3	50000.00	291.03	309.63	301.75	310.07	0.004117	5.34	9507.84	797.41	0.26
Reach 1	250	PF 3	50000.00	294.72	311.00		311.46	0.001175	5.61	9561.11	908.95	0.27
Reach 1	260	PF 3	50000.00	295.59	312.61		313.47	0.003243	7.54	6861.59	691.27	0.40
Reach 1	270	PF 3	49000.00	297.09	314.99	308.89	315.60	0.001623	6.51	8472.83	1044.80	0.33
Reach 1	280	PF 3	49000.00	298.83	316.44		316.61	0.000611	3.35	14678.53	1474.87	0.19
Reach 1	285	PF 3	49000.00	301.64	316.83	310.92	317.04	0.000603	3.67	13408.43	1520.45	0.22
Reach 1	290	PF 3	49000.00	301.71	317.23	311.58	317.45	0.000646	3.80	12899.38	1601.69	0.23
Reach 1	300	PF 3	46848.73	305.19	317.73	312.34	318.07	0.001342	4.68	10183.53	1504.49	0.27
Reach 1	310	PF 3	46848.73	305.25	318.37	315.08	319.17	0.001864	7.52	7061.91	1490.74	0.46
Reach 1	315	PF 3	46848.73	307.53	318.96	316.91	319.90	0.003084	8.19	6430.67	1493.37	0.57
Reach 1	320	PF 3	46848.73	307.20	320.12	315.71	320.78	0.001438	6.52	7184.77	1758.27	0.40
Reach 1	322		Lat Struct									
Reach 1	330	PF 3	48000.00	308.50	320.99	317.23	321.68	0.001596	6.87	7349.11	1062.59	0.42
Reach 1	340	PF 3	48000.00	309.90	322.04	317.07	322.49	0.001809	5.39	8901.04	1069.10	0.32
Reach 1	345	PF 3	48000.00	309.80	322.68	317.04	323.12	0.001920	5.27	9105.89	1163.00	0.32
Reach 1	355	PF 3	48000.00	311.40	323.21	318.35	323.88	0.002630	6.57	7307.35	1455.01	0.39

Line 1

Line 2 &3 Line 5 Line 4

10-Year For Line 5

HEC-RAS Plan: Plan 01 River: San Diego River Reach: Reach 1 Profile: PF 4

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	220	PF 4	5500.00	288.80	300.76	292.51	300.77	0.000039	0.58	8671.03	1604.48	0.04
Reach 1	230	PF 4	5500.00	289.80	300.78	294.28	300.80	0.000116	0.96	5754.35	1258.10	0.06
Reach 1	239	PF 4	5500.00	290.70	300.85	295.07	300.88	0.000276	1.40	3887.02	1112.45	0.09
Reach 1	242	PF 4	5500.00	291.70	300.92	294.97	300.96	0.000380	1.67	3289.39	450.42	0.11
Reach 1	243		Bridge									
Reach 1	244	PF 4	5500.00	292.20	300.98	295.29	301.02	0.000369	1.62	3384.82	671.93	0.11
Reach 1	245	PF 4	5500.00	291.03	301.08	297.23	301.12	0.001488	1.67	3351.20	714.34	0.13
Reach 1	250	PF 4	5500.00	294.72	301.86		301.94	0.000919	2.27	2486.74	679.69	0.20
Reach 1	260	PF 4	5500.00	295.59	303.71		303.95	0.006055	3.91	1408.16	548.29	0.43
Reach 1	270	PF 4	5000.00	297.09	306.09	302.86	306.19	0.001164	2.55	1961.24	504.67	0.23
Reach 1	280	PF 4	5000.00	298.83	307.68		307.74	0.002069	2.09	2388.37	1214.66	0.26
Reach 1	285	PF 4	5000.00	301.64	308.88	306.74	308.96	0.001527	2.26	2216.50	1028.49	0.27
Reach 1	290	PF 4	5000.00	301.71	309.73	307.48	309.80	0.001079	2.06	2426.91	1118.59	0.24
Reach 1	300	PF 4	5000.00	305.19	310.56	308.80	310.63	0.001528	2.11	2366.37	1019.84	0.23
Reach 1	310	PF 4	5000.00	305.25	311.15	308.43	311.29	0.000766	3.04	1646.68	423.73	0.26
Reach 1	315	PF 4	5000.00	307.53	311.22	310.97	312.04	0.010647	7.36	697.51	313.65	0.88
Reach 1	320	PF 4	5000.00	307.20	312.79	309.72	312.90	0.000741	2.70	1854.65	673.59	0.25
Reach 1	322		Lat Struct									
Reach 1	330	PF 4	4500.00	308.50	313.47	312.33	313.76	0.003829	4.35	1086.41	603.66	0.52
Reach 1	340	PF 4	4500.00	309.90	314.65	312.47	314.73	0.001308	2.22	2026.18	714.27	0.23
Reach 1	345	PF 4	4500.00	309.80	315.03	311.87	315.09	0.000889	1.95	2313.10	705.70	0.19
Reach 1	355	PF 4	4500.00	311.40	315.38	313.28	315.48	0.001781	2.60	1727.46	645.32	0.27

Line 5

STORM DRAIN LINE 1 100 YR PEAK FLOWS 25 YR TAILWATER ELEVATION

(25-YR BSI was not available, 50-YR FEMA WSEL was used instead and is being referred to as the "25-YR TAILWATER WSEL")

LINE. WSW

T1	Carl	ton C	aks								LINE. WOW		0	
				Drai n										
Т3	Line	1												
S0	-77	84.80	0 29	6. 160	1						305. 520			
R	-77	30. 28	0 29	6. 480	1		. 013					. 000	. 000	0
JX				6. 492	3	2	. 013	5	5. 660		301.090	90.0		. 000
R				6. 873	3		. 013					. 000	. 000	0
WE				6. 873	4		. 063							
R				7. 370	4		. 013					. 000		
WX				7. 370	5									_
R				7. 960	5		. 013					46.000	. 000	
R				9. 871	5		. 013					. 000	. 000	0
WE				9. 871	6		. 063					000		
R				0. 200	6		. 013					. 000		
WX				0. 200	7		012					000	000	^
R				3. 170	7		. 013					. 000	. 000	U
WE				3. 170 3. 500	8 8		. 063 . 013					. 000	90.000	0
R WX				3. 500	9		. 013					. 000	90.000	U
R				4. 640	9		. 013					. 000	. 000	Λ
WE				4. 640			. 500					. 000	. 000	U
SH				4. 640	9		. 500				304. 640			
CD	1	4	1	. 000		. 500		000	. 000	. 000	. 00			
CD	2	4	1	. 000		. 500		000	. 000	. 000	. 00			
CD	3	4	1	. 000		. 500		000	. 000	. 000	. 00			
CD	4	2	0	. 000		. 540		000	. 000	. 000	. 00			
CD	5	4	1	. 000		. 000		000	. 000	. 000	. 00			
CD	6	2	0	. 000	14	. 060	8.	000	. 000	. 000	. 00			
CD	7	4	1	. 000	7	. 000		000	. 000	. 000	. 00			
CD	8	2	0	. 000	14	. 132	8.	000	. 000	. 000	. 00			
CD	9	4	1	. 000	7	. 000		000	. 000	. 000	. 00			
CD	10	2	0	. 000	12	. 400	16.	000	. 000	. 000	. 00			
Q			407.	030	. 0									

Per table 3-7 of the San Diego County Hydraulic Design Manual: Kc = 0.063

Given that when Line diameter is 7.5' the cleanout is 8.5' and when line is 7', the cleanout is 8'.

7.5/8.5= 0.88 7.0/8.0= 0.88

♠ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

PAGE

Date: 12-15-2023 Time: 11: 34: 29

Date: 12-15-2023 Time: 11: 34: 29

Carl ton Oaks Bypass Storm Drain Line 1

Invert Depth Water Vel Energy | Super | Critical | Flow Top | Height / | Base Wt | ELev (CFS) (FPS) Head | Grd. El. | Elev | Depth | Width | Dia. -FT | or I.D. | ZL | Prs/Pip Stati on -|- -|- -|-SF Ave |SE Dpth|Froude N|Norm Dp L/Elem | Ch Slope HF . 00 . 00 -7784.800 296. 160 9.360 305. 520 412.69 9.34 1.35 306.87 5.26 . 00 7.500 . 000 . 0059 54.520 . 0029 . 16 9.36 . 00 4.63 . 013 . 00 PIPE -7730, 280 9. 197 305.677 412.69 9.34 307.03 . 00 5.26 . 00 7.500 . 000 296. 480 1.35 . 00 1 .0 JUNCT STR . 0060 . 0028 . 01 9.20 . 00 . 013 .00 PIPE 307.08 296, 492 9. 265 305. 757 407.03 9. 21 1.32 . 00 5.23 . 00 7.500 . 000 . 00 63.510 . 0060 . 0028 . 18 9. 26 . 00 . 013 .00 PIPE 305. 935 307. 25 . 00 296.873 9.062 407.03 9.21 1.32 5.23 7.500 WALL ENTRANCE 5.07 10.040 306.913 407.03 . 40 307.31 4.32 . 00 8.00 14.540 . 00 10.04 6. 936 . 0621 . 0005 1.62 . 013 . 00 . 00 RECTANG -7657.834 297. 304 9.572 306.876 407.03 5.32 . 44 307.32 . 00 4.32 8.00 14.540 8.000 1.064 . 0621 . 0005 . 00 9.57 . 30 1.62 . 013 . 00 . 00 RECTANG . 08 297. 370 9.500 306.870 407.03 5.36 . 45 307.32 4.32 8.00 14. 540 8.000 WALL EXIT 297, 370 9.501 306, 871 407. 03 10. 58 1.74 308.61 . 00 5.31 . 00 7.000 . 0081 . 00 . 00 72.940 . 0041 . 30 4.35 . 013 . 00 . 00 PIPE 5.31 7.000 . 000 . 00 297. 960 9.456 307. 416 407. 03 10. 58 1. 74 309. 15 . 00 . 00 183. 400 . 74 . 0104 9.46 . 00 4. 01 . 013 . 00 . 00 PIPE . 0041 ♠ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Carl ton Oaks Bypass Storm Drain Line 1

******	****	******	*****	*****	******	*****	LINL. U	JI *****	*****	*****	*****	******	*****	*****	t * *
Stati on	1 1	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd. El .	Elev		Width			ZL	No Wt	
L/EI em ******	- Ch Slope *******	- 	 *******	 *******	'	SF Ave	HF	SE Dpth	Froude N			 X-Fall ******	ZR ****	 Type ****	
-7400. 430 -	 299. 871 - -	 8. 289 - -			10.58		309. 90	. 00		. 00	7. 000 	. 000	. 00	 1 -	. 0
WALL EN			'		'	'				1			1		
-7400. 430 -	 299. 871 - - -	9. 679 - -		407. 03				. 00	4. 32 		 14. 060 	8. 000 		0	. 0
8. 000	. 0411	'	'	'	'	. 0006	. 00	9. 68		1. 87	. 013	. 00	l .	RECTA	١NG
-7392. 430	300. 200	9. 321	309. 521	407. 03	5. 46	. 46		. 00		8.00	14. 060	8. 000	. 00	0	. 0
WALL EXI	- T 							 			 		-	-	
-7392. 430	300. 200	9. 322 	309. 522	407. 03	10.58	1.74	311. 26	. 00	5.31	. 00	7. 000 	. 000 	. 00	1	. 0
293. 730	. 0101	'	1	1	ı	. 0041	1. 19	9. 32		4. 04	. 013	. 00	. 00	PIPE	
-7098. 700		7. 545		407. 03		1.74	312. 45	. 00		. 00	7.000	. 000	. 00	1	. 0
WALL EN	- TRANCE	-											- 	-	
-7098. 700		8. 844 		407. 03	5. 75 	. 51	312. 53	. 00	4. 32		14. 132	8.000		0	. 0
8. 000	- . 0412	-				0007	. 01	8.84		1. 87	. 013	. 00		RECTA	ANG
-7090. 700	303.500 -	8. 475 - -	311. 975	407. 03	6.00		312. 53	. 00	4. 32 		 14. 132 - -	8. 000 	. 00	0	. 0
WALL EXI		-		1	1			- 	- 	- 	- 		- 	- 	
-7090. 700	303. 500 -	8. 475 	311. 975	407. 03		1.74	313. 71	. 00	5. 31	. 00	7. 000 	. 000 		1	. 0
70. 700	. 0161 	-		1	1	. 0041	. 29	8. 48		3. 51	. 013	. 00		PI PE	
-7020. 000		7. 622 - -			10.58	1. 74		. 00 			7. 000 	. 000 	. 00	1	. 0
WALL EN					•			•		1			-	-	_
♠ FILE: LII	NE.WSW			w S	PGW-	CI VI LDES	SIGN Versi	on 14.07						PAGE	3

Program Package Serial Number: 7111
WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Ti me: 11: 34: 29

Carlton Oaks Bypass Storm Drain Line 1

******	******	******	******	*****	*****	*****	*****	*****	*****	*****	******	*****	*****
Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Cri ti cal	Flow Top	Height/	Base Wt		No Wth
Station Elev	(FT)	El ev	(CFS)	(FPS)	Head	Grd. El .	El ev	Depth	Width	Di aFT	or I.D.	ZL	Prs/Pip
-					-								
L/Elem Ch Slope	į į		ĺ		SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Ch
******	******	******	*******	*****	******	*****	******	******	******	******	******	****	******

STORM DRAIN LINE 1 25 YR PEAK FLOWS 100 YR TAILWATER ELEVATION LINE. WSW

											LINE. WSW			
T1	Carl	ton	0ak	(S									0	
T2	Вура	SS	Stor	m Drain										
Т3	Li ne	1												
S0	-77	84.	800	296. 160	1						311. 390			
R	-77	30.	280	296.480	1		. 013					. 000	. 000	0
JX	-77	28.	280	296. 492	3	2	. 013	4	. 270		301.090	90.0		. 000
R	-76	64.	770	296.873	3		. 013					. 000	. 000	0
WE	-76	64.	770	296.873	4		. 063							
R	-76	56.	770	297.370	4		. 013					. 000		
WX	-76	56.	770	297.370	5									
R	-75	83.	830	297.960	5		. 013					46.000	. 000	0
R	-74	00.	430	299.871	5		. 013					. 000	. 000	0
WE	-74	00.	430	299.871	6		. 063							
R	-73	92.	430	300. 200	6		. 013					. 000		
WX	-73	92.	430	300. 200	7									
R	-70	98.	700	303.170	7		. 013					. 000	. 000	0
WE	-70	98.	700	303.170	8		. 063							
R	-70	90.	700	303.500	8		. 013					. 000	90.000	0
WX	-70	90.	700	303.500	9									
R	-70	20.	000	304.640	9		. 013					. 000	. 000	0
WE	-70	20.	000	304.640	10		. 500							
SH	-70	20.	000	304.640	9						304.640			
CD	1	4	1	. 000	7	. 500		000	. 000	. 000	. 00			
CD	2	4	1	. 000	1	. 500		000	. 000	. 000	. 00			
CD	3	4	1	. 000	7	. 500		000	. 000	. 000	. 00			
CD	4	2	0	. 000	14	. 540	8.	000	. 000	. 000	. 00			
CD	5	4	1	. 000	7	. 000		000	. 000	. 000	. 00			
CD	6	2	0	. 000	14	. 060	8.	000	. 000	. 000	. 00			
CD	7	4	1	. 000	7	. 000		000	. 000	. 000	. 00			
CD	8	2	0	. 000	14	. 132	8.	000	. 000	. 000	. 00			
CD	9	4	1	. 000	7	. 000		000	. 000	. 000	. 00			
CD	10	2	0	. 000	12	. 400	16.	000	. 000	. 000	. 00			
Q			26	52. 420	. 0									

Per table 3-7 of the San Diego County Hydraulic Design Manual: Kc = 0.063

Given that when Line diameter is 7.5' the cleanout is 8.5' and when line is 7', the cleanout is 8'.

7.5/8.5= 0.88 7.0/8.0= 0.88

♠ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Carl ton Oaks Bypass Storm Drain Li ne 1

Super | Critical | Flow Top | Height / | Base Wt | Invert Depth Water Vel Energy | (CFS) (FPS) Head | Grd. El. | Elev | Depth | Width | Dia. - FT | or I.D. | ZL | Prs/Pip Stati on | -|- -|- -|- -|- -|-L/Elem | Ch Slope SF Ave HF | SE Dpth|Froude N|Norm Dp . 57 . 00 4.20 . 00 296. 160 15. 230 311. 390 266.69 6.04 311. 96 . 00 7.500 . 000 54.520 . 0059 . 0012 . 07 15.23 . 00 3.54 . 013 . 00 PIPE 6.04 14. 976 311. 456 312.02 . 00 4.20 . 00 7.500 . 000 296. 480 266.69 . 57 .00 1 .0 JUNCT STR . 0060 . 0012 . 00 14.98 . 00 . 013 .00 PIPE 15. 002 311. 494 5.94 312.04 262.42 . 55 . 00 4.16 . 00 7.500 . 000 . 00 15.00 63.510 . 0060 . 0012 . 07 . 00 3.49 . 013 . 00 .00 PIPE 5.94 312. 12 296. 873 14. 695 311. 568 262, 42 . 55 . 00 4.16 7.500 WALL ENTRANCE 296, 873 15, 200 312, 073 3.22 262. 42 2.16 . 07 312. 15 . 00 8.00 14.540 . 00 8.000 . 0621 . 0001 15. 20 . 10 1. 21 . 013 .00 .00 RECTANG . 08 297. 370 14. 699 312.069 262.42 2.23 312. 15 . 01 3.22 8.00 14.540 8.000 .00 - | -WALL EXIT . 00 297. 370 14. 700 312. 070 262.42 6.82 . 72 312.79 4.25 . 00 7.000 72.940 . 12 . 0081 . 0017 . 00 . 00 3.32 . 013 . 00 PIPE . 72 262. 42 6.82 313.02 . 00 . 00 -7583, 830 297. 960 14. 336 312. 296 4.25 7.000 . 000 .00 1 .0 . 31 183.400 . 0104 .00 PIPE . 0017 14.34 . 00 3.09 . 013 . 00 . 000 -7400. 430 299. 871 12. 735 312. 606 . 72 4. 25 7.000 . 00 262. 42 6.82 313. 33 . 00 . 00 WALL ENTRANCE

♠ FILE: LINE.WSW W S P G W - CIVILDESIGN Version 14.07 Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Time: 11: 38: 5

PAGE

2

PAGE

Date: 12-15-2023 Time: 11: 38: 5

Carl ton Oaks Bypass Storm Drain Line 1

*****	*****	*****	******	*****	******	******	******	*****	*****	*****	*****	*****	*****	****	***
Stati on	Invert Elev	Depth (FT) 	Water Elev 	Q (CFS) -	Vel (FPS) 	Vel Head	Energy Grd. El .			Flow Top Width				No W ⁻ Prs/I	
L/EI em *****	- Ch Slope *****		- ******	- ******	 ******	SF Ave	HF	- SE Dpth *****	- Froude N *****	- Norm Dp *****	-	 X-Fall *****	 ZR ****	 Type ****	Ch * * *
-7400. 430 -			313. 275 -				313. 37	. 00			 14. 060 	8.000	. 00	0	. 0
8. 000		l I	l I			. 0001	. 00	13. 40		1. 39	. 013	. 00	. 00	RECT	₹NG
-7392. 430			313. 271					. 00		8.00	14. 060 	8.000	. 00	0	. 0
WALL EX	 T												-	-	
-7392. 430										. 00	7. 000			1	. 0
293. 730							. 50	13. 07	. 00	3. 12	. 013	. 00	. 00	PI PE	
-7098. 700							314. 49	. 00		. 00	7. 000	. 000	. 00	1	. 0
WALL EN	 TRANCE								-	-			-	-	
-7098. 700	303. 170										14. 132	8. 000	. 00	0	. 0
8. 000	 . 0412					. 0002		 11. 22	 . 15	1. 39	. 013	. 00	. 00	- RECT/	ANG
-7090. 700			314. 387				314. 53	. 00		8.00	14. 132	8. 000	. 00	0	. 0
WALL EX										-			-	-	
-7090. 700										. 00		. 000	. 00	1	. 0
70. 700			-				. 12	10.89		2.74	 . 013	. 00	. 00	PI PE	
-7020. 000						. 72	315. 23	. 00	4. 25	. 00	7. 000	. 000	. 00	1	. 0
WALL EN	 TRANCE		-							-			-	-	
-7020. 000				262. 42			315. 57	. 00			12. 400	16. 000	. 00	0	. 0
-													-	-	

STORM DRAIN LINE 2 100 YR PEAK FLOWS 100 YR TAILWATER ELEVATION LINE. WSW

```
0
T1 Carl ton Oaks
T2 Bypass Storm Drain
T3 Line 2
                                                      315.320
S0
   -4345.000 311.420 1
R
    -4323.300 311.580
                        1
                                . 013
                                                                      00.000
                                                                                 .000 0
R
    -4268.090 312.000
                                . 013
                                                                     -26.000
                                                                                 .000 0
                        1
R
    -4107.850 313.200
                                . 013
                                                                      00.000
                                                                                 .000 0
                        1
R
    -4055. 100 313. 595
                                . 013
                                                                      34.000
                                                                                 .000 0
                        1
R
    -4048.080 313.650
                                . 013
                                                                        . 000
                                                                                 .000 0
WE
    -4048.080
                                . 100
                  . 000
SH
    -4048.080 313.650
                                                      313.650
                        1
CD
     2 2 0
                  . 000
                         6.000
                                   7.000
                                          . 000
                                                 . 000
                                                        . 00
CD
     1 6
           0
                                    . 00
                                                        . 00
                                                                                . 00
                  . 000
                                           . 00
                                                 . 00
                                                              . 00
                                                                    . 00
                                                                          . 00
                                                                                       . 00
                                                                                              . 00
PTS 116 10.000
                  . 000 11. 090
                                  . 140 12. 000
                                                 .\,530\ 12.\,620\quad 1.\,110\ 12.\,830\quad 1.\,790
PTS
          12.620
                  2.480 12.000
                                 3.060 11.090
                                                3. 450 10. 000 3. 580 8. 910
                                                                              3.450
PTS
          8.000 3.060 7.380 2.480 7.170 1.790 7.380 1.110 8.000
                 . 140
PTS
           8. 910
              80. 190
Q
```

Per table 3-7 of the San Diego County Hydraulic Design Manual:

Kc = 0.1

Given that when Line diameter is 5.67' and the wall is 7'

5.67/7= 0.81

♠ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Carl ton Oaks Bypass Storm Drain Line 2

Super | Critical | Flow Top | Height / | Base Wt | Invert Depth Water Vel Energy | (CFS) ELev (FPS) Head | Grd. El. | Elev | Depth Width | Dia. - FT | or I.D. | ZL | Prs/Pip Station SF Ave L/Elem | Ch Slope HF |SE Dpth|Froude N|Norm Dp ***** 311, 420 3.900 315. 320 80.19 5.16 . 41 315.73 . 00 2.24 . 00 0.0 21.700 .0074 . 0019 . 04 3.90 . 00 1.804 . 013 IR-COV -4323. 300 311. 580 315. 361 80.19 315.77 . 00 2.24 0 .0 3. 781 5.16 . 41 41.847 . 0076 . 0019 . 08 . 00 . 00 1.789 . 013 IR-COV 3.580 315.89 311.898 315. 478 80. 19 5.16 . 41 3.58 2.24 . 00 0.0 . 0019 . 013 13.363 . 0076 . 03 3.58 1.789 I R-COV 315.92 -4268.090 312,000 3.498 315, 498 80. 19 5.18 2.24 1.37 0.0 40.799 . 0075 . 0017 3.50 1.796 IR-COV 312.306 315.98 3. 217 315, 522 80. 19 5.44 . 46 . 00 2.24 3.27 0.0 23.813 . 0075 . 0016 . 04 3.22 1.796 . 013 I R-COV -4203.478 316.02 312.484 3.031 315. 515 80.19 5.70 . 50 2.24 4.06 0.0 IR-COV 18. 165 . 0075 . 0017 . 03 3.03 1.796 312.620 2. 876 315. 496 80. 19 5.98 . 56 316.05 . 00 2.24 4.39 0 . 0 14.719 IR-COV . 0075 . 0018 . 03 2.88 . 60 1.796 . 013 2.739 -4170, 594 312.730 315, 469 80. 19 6.27 . 61 316.08 2.24 4.69 0.0 2.927 . 0075 . 0020 . 01 IR-COV 2.74 . 67 1.796 -4167. 667 312. 752 2. 711 315. 463 80. 19 6.34 . 62 316.09 . 00 2.24 0 . 0

HYDRAULIC JUMP ♠ FILE: LINE.WSW

W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Time: 5: 21: 39

PAGE

2

PAGE

Date: 12-15-2023 Time: 5: 21: 39

Carl ton Oaks Bypass Storm Drain Line 2

******	******	******	******	******	******	******	*****	*****	*****	*****	*****	******	*****	*****
Stati on	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS) 	Vel Head	Energy Grd. El .			Flow Top Width			 ZL	No Wth Prs/Pip
L/EI em ******	- Ch Slope	*****	- *******	*****	******	SF Ave	HF	- SE Dpth *****	- Froude N *****	- Norm Dp *****	- "N" ******	-	 ZR ****	Type Ch
-4167. 667 -	 312. 752 -	1. 845 -		80. 19 	9. 96 	1. 54 		. 00	 2.24 	 5. 63 	 	 1 '	 -	0 .0
59. 817	. 0075	'		'	'	. 0065	. 39	1. 85	1. 47	1. 796	. 013		ı I	I R-COV
-4107. 850 -	313. 200 -	1. 900	 315. 100 	80. 19	9. 59 	1. 43	316. 53	. 23	l 2.24 l	 5. 59 	 	 1 '	 _	0 .0
14. 280						. 0060	. 09	2. 13	1. 38	1. 796	. 013		1	I R-COV
-4093. 571 -	 313. 307 -	1. 925	 315. 232 	80. 19 	9. 43 	1. 38	316. 61	. 23 	 2.24 	 5. 58 	 	 1 	 -	0 .0
25. 374						. 0055	. 14	2. 15	1. 35	1. 796	. 013		1	I R-COV
-4068. 197	 313. 497 - -	2.000	315. 497 	80. 19 			316. 75	. 20	2. 24	5. 53	 	 1	 	0 .0
13. 096	. 0075	-				. 0048	. 06	2. 20	1. 25	1. 796	. 013	11	-	I R-COV
-4055. 100	 313. 595 -	2. 079	 315. 674 	80. 19 		1. 14 	316. 82	. 00	2. 24	5. 48	 	 1 		0 .0
5. 267	. 0078					. 0042	. 02	2.08	1. 16	1. 774	. 013			I R-COV
-4049. 833	313. 636 -	2. 154	 315. 790 	80. 19 		1.05	316. 84	. 00	 2. 24 	 5. 44 	 	 1 	 -	0 .0
1. 753		l			l I	. 0038	. 01	2. 15	1. 08	1. 774	. 013	1 1		I R-COV
-4048. 080	313. 650 -	2. 243	 315. 893 	80. 19 	7. 83 	. 95 	316. 84	. 00	 2.24 	 5. 38 	 	 1 		0 .0
WALL EN		!												
-4048. 080 -		3. 325	 316. 975 	80. 19 	3. 45 	. 18 	317. 16	. 00	 1.60 	7. 00 	6. 000 	7. 000 	. 00 -	0 .0

STORM DRAIN LINE 3 100 YR PEAK FLOWS 100 YR TAILWATER ELEVATION LINE. WSW

T1 Carl ton Oaks 0 0
T2 Bypass Storm Drain
T3 Line 3
S0 -5112.530 306.100 1 315.870
R -5019.440 308.290 1 .013 .000 .000 0
SH -5017.440 308.290 1 308.290
CD 1 4 1 .000 1.500 .000 .000 .000

0 12.780 .0

↑ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07 PAGE

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Ti me: 11: 39: 22

Carlton Oaks
Bypass Storm Drain
Line 3

Water Super | Critical | Flow Top | Height / | Base Wt | Invert Depth Vel (CFS) Station | El ev (FT) El ev (FPS) Head Grd. El . | Elev | Depth Width |Dia.-FT|or I.D.| ZL |Prs/Pip L/Elem | Ch Slope SF Ave HF |SE Dpth|Froude N|Norm Dp X-Fall | ZR 315.870 7.23 . 81 316.68 . 00 1.34 . 00 1.500 . 000 -5112. 530 306. 100 9.770 12. 78 . 00 . 0235 9.77 93.090 . 0148 1.38 . 00 1.01 . 013 . 00 . 00 PIPE 1.34 -5019. 440 308. 290 8. 958 317. 248 12. 78 7.23 . 81 318.06 . 00 . 00 1.500 . 000 . 00 1 .0 . 0235 2.000 . 0188 1. 75 8.96 . 00 1.01 . 013 .00 PIPE -5017. 440 308. 290 8. 958 317. 248 7.23 318.06 . 00 1.34 . 00 1.500 . 000 12. 78 . 81 .00 1 .0 - | -

♠

STORM DRAIN LINE 4 100 YR PEAK FLOWS 100 YR TAILWATER ELEVATION LINE. WSW

```
0
T1 Carl ton Oaks
T2 Bypass Storm Drain
T3 Line 4
S0 -6044.640 305.030 1
                                             316. 440
                       . 013
   -6010. 840 305. 370 1
                                                             . 000
                                                                  . 000 0
                                        WX -6008.380 305.395 4
SH -6008.380 305.395 4
                                             305.395
                    6.680
CD
    2 2
          0
              . 000
                             4.000 .000 .000
                                               . 00
                                        . 000
                                               . 00
CD
    3 2
          0
               . 000
                     6.680
                             4.000 .000
         1
CD
   4 4
               . 000
                     2.250
                              . 000 . 000
                                        . 000
                                               . 00
    1 6 0
CD
               . 000
                              . 00
                                   . 00
                                         . 00
                                              . 00
                                                   .00 .00 .00 .00
                                                                        . 00
                                                                             . 00
PTS 116 2.000
               . 000 2. 610
                            . 080 3. 120
                                        . 290
                                              3.460
                                                    . 620 3. 580 1. 000
         PTS
                                              2.000 2.000 1.390 1.920
PTS
         . 880 1. 710
                     . 540 1. 380
                                 . 420 1. 000
                                              . 540
                                                     . 620
                                                           . 880
                                                                 . 290
PTS
              . 080
         1.390
Q
           79.610 .0
```

LI NE. OUT

W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

PAGE

Date: 12-15-2023 Time: 11: 40: 19

Carlton Oaks
Bypass Storm Drain
Line 4

Water Super | Critical | Flow Top | Height / | Base Wt | Invert Depth Vel (CFS) Station El ev (FT) (FPS) Head Grd. El. | Elev | Depth Width |Dia.-FT|or I.D.| ZL |Prs/Pip L/Elem | Ch Slope SF Ave HF |SE Dpth|Froude N|Norm Dp X-Fall | ZR |Type Ch 4.21 320.65 1.96 . 00 0 . 0 -6044.640 305.030 11. 410 316. 440 79. 61 16. 46 . 00 11.41 1. 900 33.800 . 0101 . 0416 1.41 . 00 . 013 I R-COV -6010.840 305. 370 12. 476 317. 846 79. 61 16. 46 4.21 322.05 . 00 1.96 . 00 0 . 0 . 0101 2.460 . 0208 125.02 12.48 . 00 1.900 . 013 IR-COV -6008.380 305. 395 317.871 79. 61 20. 02 6.23 324. 10 . 00 2.24 2.250 . 000 . 00 12. 476 . 00 1 .0

Т

♠ FILE: LINE.WSW

STORM DRAIN LINE 5 100 YR PEAK FLOWS 10 YR TAILWATER ELEVATION LINE. WSW

т1	0		. 0-1									11311		0	
T1			n 0ak											0	
T2				m Drain											
Т3	Li n														
S0	-88	80.	500 3	305. 580	1						308. 49	90			
R	-86	22.	780 3	306. 870	1		. 013						00.000	. 000	0
R	-85	98.	080 3	306. 994	1		. 013						-14.000	. 000	0
R	-85	39.	020 3	307. 290	1		. 013						. 000	. 000	0
WE				307. 290	3		. 200								
JX				307. 540	3	2	. 013	22	. 150		308.	290	90.0	2	8. 000
WX				307. 540	4	_								_	
R				308. 890	4		. 013						00.000	. 000	0
R				309. 890	4		. 013						-25. 000	. 000	
R				311. 170	4		. 013						00.000	. 000	
R				313. 530	4		. 013						-25. 000	. 000	
WE				313. 530	5		. 150						23.000	. 000	O
JX				314. 110	6		. 013								
WX				314. 110	7		.013								
				314. 110 315. 030	7		012						-25.000	000	0
R					-		. 013							. 000	
R				325. 860	7		. 013						00.000	. 000	U
WE				325. 860	8		. 150				205 07				
SH				325. 860	7		_		000		325. 86	00			
CD	1	4	1	. 000		. 500		000	. 000	. 000	. 00				
CD	2	4	1	. 000		. 500		000	. 000	. 000	. 00				
CD	3	2	0	. 000		. 450	5. 0		. 000	. 000	. 00				
CD	4	4	1	. 000		. 500		000	. 000	. 000	. 00				
CD	5	2	0	. 000	14	. 940	4. 0	000	. 000	. 000	. 00				
CD	6	2	0	. 000	14	. 940	4. 0	000	. 000	. 000	. 00				
CD	7	4	1	. 000	3	. 000	. (000	. 000	. 000	. 00				
CD	8	2	0	. 000	6	. 000	4. 0	000	. 000	. 000	. 00				
Q			81	. 370	. 0										

Per table 3-7 of the San Diego County Hydraulic Design Manual:

Kc = 0.200 and 0.150

Given that when Line diameter is 3.5' the cleanout is 5' and when line is 3', the cleanout is 4'.

3.5/5= 0.70

3/4 = 0.75

↑ FILE: LINE. WSW W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Carlton Oaks
Bypass Storm Drain
Line 5

******	*****	******	********	******	******	******	*****	*****	*****	*****	******	******	****	*****	: * *
Stati on	Invert Elev	Depth (FT)	Water Elev	0 (CFS)	Vel (FPS)	VeI Head		Elev		Width			ZL	No Wt Prs/P	
L/EIem ******	- Ch Slope	 ******	 *******	 *******	*****	 SF Ave *****		I	 Froude N ******	 Norm Dp *****	 "N" *****	 X-Fall ******	ZR ****	 Type ****	Ch:**
-8880. 500	305. 580 -	3. 106 			11.47	2.04	310. 73	. 00	3. 11 	 2. 21 	3. 500 	. 000	. 00	1	. 0
11. 606	. 0050			1	1	. 0093	. 11	3. 11	1.00	3. 50	. 013	. 00	. 00	PIPE	
-8868. 894 -	305. 638 -	3. 342 	308. 980	103. 52		1.86	310. 84	. 00 -	 3. 11 	 1. 45 	3. 500 	. 000 	. 00	 1 -	. 0
21. 290	. 0050	ı	'	'	l	. 0096	. 21	3. 34	. 76	3. 50	. 013	. 00	. 00	PIPE	
-8847. 604	305. 745	3. 500	309. 245	103. 52	10. 76	1. 80	311. 04	. 00	3.11	. 00	3.500	. 000	. 00	1	. 0
224. 823	- . 0050					. 0103	2. 33	3.50		3. 50	. 013	 . 00		- PI PE	
-8622. 780	306. 870	4. 755	311. 625	103. 52		1. 80	313. 42	. 00	3.11	. 00	3. 500	. 000	. 00	1	. 0
24. 700	- . 0050					. 0106	. 26	. 00	. 00	3. 50	. 013	. 00	. 00	PI PE	
-8598. 080		5. 034	312. 028	103. 52	10. 76	1. 80		. 00	3. 11	. 00	3. 500	. 000	. 00	1	. 0
59. 061	- . 0050					. 0106	. 63	5. 03	. 00	3. 50	. 013	. 00	. 00	PI PE	
-8539. 020	307. 290	5. 363		103. 52		1. 80		. 00	3. 11	. 00	3. 500	. 000	. 00	1	. 0
WALL EN	1 1											 	-	-	
-8539. 020	307. 290	7. 374	314. 664 	103. 52 	2.81	. 12	314. 79	. 15	2.37	5. 00	 14. 450	5. 000	. 00	0	. 0
JUNCT STR	- . 0625					. 0002	. 00	 7.52	. 18		. 013	. 00		RECTA	NG
-8535. 020	307. 540 -	 7. 235 - -	314. 775 	81. 37	2. 25	. 08	314. 85	. 00 	 2.02 		 14. 450 - -	5. 000	. 00	0	. 0
WALL EXI					1									1-	
-8535. 020		7. 235	314. 775	81. 37	8. 46	1. 11	315. 89	. 00	2.82	. 00	3. 500	. 000	. 00	 1 -	. 0
58. 880						. 0065	. 39	 7.24	. 00	1. 82	. 013	. 00	. 00	PI PE PAGE	2
♠ FILE: LII	INE. WOW		Drogram	Package Se			SIGN Versi	UII 14. U /						FAUL	2

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Time: 11: 46: 8

PAGE

Date: 12-15-2023 Time: 11: 46: 8

Carlton Oaks
Bypass Storm Drain
Line 5

LI NE. OUT

******	*****	******	*****	******	******	*****	*****	*******	*****	*****	*****	******	*****	*****	***
Stati on	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd. El .		Critical Depth	Flow Top Width				No Wt	
L/EI em ******	 Ch Slope ******	 ******	*****	 ******	*****	 SF Ave *****	- HF ******	 SE Dpth *****	 Froude N *****	 Norm Dp *****	 "N" *****	 X-Fall *****	ZR ****	 Type ****	Ch * * *
-8476. 140	308. 890 	6. 270 		81. 37 		1.11		. 00	2.82 	. 00	3.500	. 000 - -	. 00	1	. 0
43. 819	. 0228	'			ı	. 0065	. 29	. 00	I	1. 82	. 013	. 00	. 00	PIPE	
-8432. 320	309. 890	5. 674			8. 46	1. 11	316. 67	. 00	2.82	. 00	3. 500	. 000	. 00	1	. 0
52. 630	. 0243						. 34	5. 67	. 00	1. 79	. 013	. 00	. 00	PI PE	
-8379. 690	311. 170	4. 738		81. 37	8. 46	1. 11	317. 02	. 00	2.82	. 00	3. 500	. 000	. 00	1	. 0
85. 106	. 0223			 			. 55	. 00	. 00	1. 83	. 013	. 00	. 00	PI PE	
-8294. 584	313. 070	3. 500		81. 37	8. 46	1.11	317. 68	3.50	2.82	. 00	3. 500	. 000	. 00	1	. 0
12. 574	. 0223			 			. 08	3.50	. 00	1. 83	. 013	 . 00	. 00	PI PE	
-8282. 010		3. 192		81. 37		1. 21	317. 76	. 02	2.82	1. 98	3. 500	. 000	. 00	1	. 0
HYDRAULI C	 .JUMP			 								 	-	-	
-8282. 010	313. 351 313. 351	2. 468			11. 22	1. 95	317. 77	. 05	2.82	3. 19	3. 500	. 000	. 00	1	. 0
4. 044	 0223		 	 			. 04	2. 52	1. 31	1.83	. 013	. 00	. 00	PI PE	
-8277. 966	 313. 441	2. 559	316. 000	81. 37		1.81	317. 81	. 05	2.82	3. 10	3. 500	. 000	. 00	1	. 0
2. 996	 0223		 	 		. 0079	. 02	2. 61	1. 22	1.83	. 013	. 00	. 00	PI PE	
-8274. 970		2. 681			10. 29	1. 64	317. 83	. 04	2. 82	2. 96	3. 500	. 000	. 00	1	. 0
1. 000	 0223			 			. 01	2.72	 1.11	1. 83	. 013	 . 00	. 00	PI PE	
-8273. 970		2. 816	316. 346	81. 37	9. 81	1. 49	317. 84	. 03	2. 82	2. 78	3. 500	. 000	. 00	1	. 0
WALL EN	 ΓRANCE												-	-	

WALL ENTRANCE

♠ FILE: LINE. WSW

W S P G W - CIVILDESIGN Version 14.07

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Time: 11: 46: 8

PAGE

3

Carlton Oaks
Bypass Storm Drain
Line 5

Super | Critical | Flow Top | Height / | Base Wt | Invert Depth Water Vel Vel Energy | No Wth (FT) EI ev (CFS) (FPS) Grd. El. | Elev | Depth | Width | Dia. -FT | or I.D. | ZL | Prs/Pip Stati on | El ev Head | HF | SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch L/Elem | Ch Slope SF Ave

							LI NE. OU	IT .			1				
-8273. 970	313. 530		318. 425	81. 37	4. 16	. 27		. 00	2. 34		14. 940	4. 000	. 00	0	. 0
JUNCT STR	- . 1450	- -	- -	-	-	-		4. 90	. 33		. 013	. 00		RECTA	ANG
-8269. 970	314. 110		315. 082	81. 37	20. 93	6. 81	321. 89	1. 19	2. 34	4. 00	14. 940	4. 000	. 00	0	. 0
- - WALL EXI	- Г	- -	- -	-	-	-						-	-	-	
-8269. 970	314. 110		315. 760	81. 37	20. 43	6. 48	322. 24	. 85	2. 78	2. 98	3.000	. 000	. 00	1	. 0
19. 950	. 0461	- -	-1-	-	-	- . 0431	. 86	2. 50	3. 12	1. 62	. 013	- . 00	. 00	PIPE	
-8250. 020	315. 030	1. 657	316. 687	81. 37	20. 32	6. 41	323. 10	. 00	2. 78	2. 98	3.000	. 000	. 00	1	. 0
- - 32. 178	- . 0462	- -	- -	-		. 0422	1. 36	1. 66	3. 09	1.62	. 013	- . 00	. 00	PI PE	
-8217. 842	316. 517		318. 189	81. 37	20. 10	6. 27	324. 46	. 00	2. 78	2. 98	3.000	. 000	. 00	1	. 0
- - 71. 377	- . 0462	- -	- -	-	-	. 0392	2. 80	1. 67	3. 04	1. 62	. 013	- . 00	. 00	PI PE	
-8146. 464	319. 816	1. 738	321. 554	81. 37	19. 16	5. 70	327. 26	. 00	2. 78	2. 96	3.000	. 000	. 00	1	. 0
38. 629	. 0462	- -	- -	-	-	. 0346	1. 34	1.74	2. 82	1. 62	. 013	. 00	. 00	PI PE	
-8107. 835	321. 602	1. 809	323. 410	81. 37	18. 27	5. 18	328. 59	. 00	2. 78	2. 94	3.000	. 000	. 00	1	. 0
25. 478	- . 0462	- -	- -	-	-	. 0306	. 78	1.81	2. 61	1. 62	. 013	. 00	. 00	PI PE	
-8082. 358	322. 779	1. 883	324. 662	81. 37	17. 42	4. 71	329. 37	. 00	2. 78	2. 90	3.000	. 000	. 00	1	. 0
- - 18. 336	- . 0462	- -	- -	-	-	. 0272	. 50	1. 88	2. 42	1.62	. 013	- . 00	. 00	PI PE	
-8064. 022	323. 627		325. 589	81. 37	16. 61	4. 28	329. 87	. 00	2. 78	2. 85	3.000	. 000	. 00	1	. 0
- - 13.810 ♠ FILE: LINI	. 0462	- -	- -	- W S	•	- . 0241 VI LDES	 .33 SIGN Versio	1. 96	2. 23	1. 62	. 013	. 00	. 00	- PI PE PAGE	4
			Program Pac		rial Numbe	er: 711	1				D 1 10	15 0000 -			
		Carl t	on Oaks		WAIER SU	JRFACE	PROFILE LI	STING			Date: 12-1	15-2023 T	ıme:1	1: 46:	8
			ass Storm [)rai n											

Bypass Storm Drain Line 5

Depth | Water Q Vel Vel | Energy | Super | Critical | Flow Top | Height / Base Wt | No Wth Head | Grd Fl | Fley | Depth | Width | Dia - Flor | D | 71 | Prs/Pip | Invert | Q | vei | (CFS) | (FPS)

Station	ELEV	(FI)	ELEV	(CFS)	(FPS)	Head	Gra. EI .	ELEV	μepτn	Wiath	DLaFT	or I.D.	ZL	Prs/Pip	
-															
L/EI em	Ch Slope	j	İ	İ	į	SF Ave	HF	SE Dpth	Froude N	Norm Dp	i "N"	X-Fall	ZR	Type Ch	
******	******	******	******	******	* * * * * * *	*****						******	****	*****	
	İ	i	i i	i i	i '	i		i	i	ì	i		!	i	
-8050. 212	324. 265	2. 047	326. 312	81. 37	15. 84	3.89	330. 21	. 00	2. 78	2. 79	3.000	. 000	. 00	1 .0	
_													-	-	
10. 644	. 0462	•	•	•		. 0215	. 23	2. 05	2. 06	1. 62	. 013	. 00	. 00	PIPE	
-8039. 568	324. 757	2. 138	326. 895	81. 37	15. 10	3.54	330. 44	. 00	2.78	2.72	3.000	. 000	. 00	1 .0	

	LI NE. OUT	
- - 8. 264 . 0462	- - - - - -	PE
-8031. 304 325. 139 2. 237 327. 375 - -		. 0
6. 365 . 0462	. 0172 . 11 2. 24 1. 73 1. 62 . 013 . 00 . 00 PIF	PE
-8024. 939 325. 433 2. 345 327. 778	81. 37	. 0
- - 4. 729 . 0462	. 0156 . 07 2. 34 1. 56 1. 62 . 013 . 00 . 00 PIF	PE
		. 0
- - 3. 181 . 0462	- - - - - - - - - -	PE
	81. 37 12. 48 2. 42 330. 82 .00 2. 78 2. 03 3. 000 .000 .00 1	. 0
- - 1. 330 . 0462	- -	PE
-8015. 700 325. 860 2. 783 328. 643		. 0
- - WALL ENTRANCE	- - -	
-8015. 700 325. 860 6. 758 332. 618 - -	81. 37 3. 01 . 14 332. 76 . 00 2. 34 4. 00 6. 000 4. 000 . 00 0	. 0

STORM DRAIN LINE 5 10 YR PEAK FLOWS 100 YR TAILWATER ELEVATION LINE. WSW

T1	Car	l to	n 0a	ıks											0	
T2	Вур	ass	Sto	rm Drain												
T3	Li n															
S0	-88	80.	500	305. 580	1						316.7	00				
R	-86	22.	780	306.870	1		. 013						00.	000	. 000	0
R	-85	98.	080	306. 994	1		. 013						-14.	000	. 000	0
R	-85	39.	020	307. 290	1		. 013							000	. 000	0
WE	-85	39.	020	307. 290	3		. 200									
JX	-85	35.	020	307. 540	3	2	. 013	15	. 460		308	. 290		90.0	2	8. 000
WX	-85	35.	020	307. 540	4											
R	-84	76.	140	308.890	4		. 013						00.	000	. 000	0
R	-84	32.	320	309.890	4		. 013						-25.	000	. 000	0
R	-83	79.	690	311. 170	4		. 013						00.	000	. 000	0
R	-82	73.	970	313. 530	4		. 013						-25.	000	. 000	0
WE	-82	73.	970	313. 530	5		. 150									
JX	-82	69.	970	314. 110	6		. 013									
WX	-82	69.	970	314. 110	7											
R	-82	50.	020	315. 030	7		. 013						-25.	000	. 000	0
R	-80	15.	700	325.860	7		. 013						00.	000	. 000	0
WE	-80	15.	700	325.860	8		. 150									
SH	-80	15.	700	325.860	7						325.8	60				
CD	1	4	1	. 000	3.	500	. 0	00	. 000	. 000	. 00					
CD	2	4	1	. 000	2.	500		00	. 000	. 000	. 00					
CD	3	2	0	. 000	14.	450	5. 0	00	. 000	. 000	. 00					
CD	4	4	1	. 000	3.	500		00	. 000	. 000	. 00					
CD	5	2	0	. 000	14.	940	4. 0	00	. 000	. 000	. 00					
CD	6	2	0	. 000		940	4. 0	00	. 000	. 000	. 00					
CD	7	4	1	. 000	3.	000	. 0	00	. 000	. 000	. 00					
CD	8	2	0	. 000		000	4.0	00	. 000	. 000	. 00					
Q			4	9. 830	. 0											

Per table 3-7 of the San Diego County Hydraulic Design Manual:

Kc = 0.200 and 0.150

Given that when Line diameter is 3.5' the cleanout is 5' and when line is 3', the cleanout is 4'.

3.5/5= 0.70

3/4 = 0.75

♠ FILE: LINE.WSW

Program Package Serial Number: 7111

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Time: 11: 56: 36

Date: 12-15-2023 Time: 11: 56: 36

PAGE

Carlton Oaks Bypass Storm Drain Line 5

*****	*****	******	LINE 5 ******	******	*****	******	*****	*****	*****	*****	*****	******	*****	*****	<**
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	VeI (FPS)	Vel Head	Energy Grd. El .	El ev	Depth	Flow Top Width				No Wt Prs/P	
L/EI em ******	 Ch Slope ******	*****	 *******	 *******	******	SF Ave		 SE Dpth *****	Froude N	 Norm Dp *****		 X-Fall *****	ZR ****	 Type ****	Ch ·**
-8880. 500	305.580 	11. 120	316. 700 	65. 29 	6. 79	. 72		. 00	2.53 	. 00	3.500	. 000	. 00	1	. 0
257. 720	1 1	_				. 0042	1. 09	11. 12	I .	2.64	. 013	. 00		PI PE	
-8622. 780	l 306. 870	10. 915		65. 29 	6. 79	. 72	318. 50	. 00	2.53	. 00	3. 500	. 000	. 00	1	. 0
24. 700	. 0050					. 0042	. 10	. 00	. 00	2.64	. 013	. 00	. 00	PI PE	
-8598. 080	306. 994	10. 952		65. 29	6. 79	. 72	318. 66	. 00	2.53	. 00	3. 500	. 000	. 00	1	. 0
59. 061	. 0050						. 25	 10. 95		2. 64	. 013	. 00	. 00	PI PE	
-8539. 020		10. 904		65. 29	6. 79	. 72	318. 91	. 00	2.53	. 00	3. 500	. 000	. 00	1	. 0
WALL EN	 TRANCE												-	-	
-8539. 020		11. 740		65. 29	1. 11	. 02		. 02	1.74		14. 450	5. 000	. 00	0	. 0
JUNCT STR	 . 0625					. 0000	. 00	 11. 76	. 06		. 013	. 00		RECTA	NG
-8535. 020		11. 508		49. 83	. 87	. 01		. 00	1. 46		14. 450	5. 000	. 00	0	. 0
WALL EX	 T												-	-	
-8535. 020		11. 509		49. 83	5. 18	. 42	319. 47	. 00	2. 21	. 00	3.500	. 000	. 00	1	. 0
58. 880	 . 0229					. 0025	. 14	11. 51	. 00	1. 38	. 013	. 00		PI PE	
-8476. 140	 308.890	10. 303		49. 83	5. 18	. 42	319. 61	. 00	2. 21	. 00	3.500	. 000	. 00	1	. 0
43. 819	. 0228					. 0025	. 11	. 00	I .	1. 38	. 013	. 00	. 00	PI PE	
-8432. 320		9. 454		49. 83	5. 18	. 42	319. 76	. 00	2. 21	. 00	3. 500	. 000	. 00	1	. 0
52. 630		-			'	. 0025	. 13	9. 45	. 00	1. 36	. 013	. 00	. 00	PI PE	•
♠ FILE: LI	NE. WSW		Program	W S Package Se			SIGN Versi 11	on 14.07						PAGE	2

Program Package Serial Number: 7111

Carl ton Oaks

Line 5

WATER SURFACE PROFILE LISTING

Bypass Storm Drain

LI NE. OUT

*****	*****	*****	*****	*****	*****	*****	LINL. UC) *****	*****	*****	*****	*****	*****	*****	**
Stati on	Invert Elev	Depth (FT)	Water Elev 	Q (CFS)	Vel (FPS)	Vel Head		Super Elev 	Critical Depth	Flow Top Width	Hei ght/ Di aFT	Base Wt or I.D.	 ZL	No Wtl Prs/P	
L/EI em ******	 Ch Sl ope *****	- ******	- ******	 *****	*****	SF Ave		1	 Froude N *****	 Norm Dp *****	 "N" *****	- X-Fall *****	 ZR ****	 Type	Ch * *
-8379. 690		8. 304	319. 474		5. 18 	. 42		. 00	2. 21	. 00	3. 500	. 000	. 00	1 1	. 0
105. 721	 . 0223		 ı			. 0025	. 26	. 00		 1. 39	. 013	. 00	. 00	PI PE	
-8273. 970		6. 247		49. 83	5. 18	. 42	320. 19	. 00	 2. 21 	. 00	3. 500	. 000	. 00	1 1	. 0
WALL EN	 TRANCE												- 	-	
-8273. 970		6. 663					320. 25	. 00	1. 69		14. 940	4. 000		0	. 0
JUNCT STR	 . 1450					. 0002	. 00	6.67	. 13		. 013	. 00		RECTA	NG
-8269. 970	314. 110	6. 073		49. 83		. 07		. 01 	1. 69 		14. 940	4. 000	. 00	0	. 0
WALL EXI	 T												- 	-	
-8269. 970		6. 073	320. 183	49. 83	7. 05 	. 77 	320. 95	. 00	2.30 	. 00	3.000 	. 000	. 00	1 1	. 0
19. 950	 . 0461					. 0056	. 11	. 00		1. 22	. 013	. 00		PI PE	
-8250. 020		5. 346				. 77		. 00	2.30	. 00	3.000	. 000	. 00	1 1	. 0
30. 792	 . 0462					. 0056	. 17	5. 35		 1. 22	. 013	. 00	. 00	PI PE	
-8219. 228		4. 093		49. 83		. 77		. 00	2.30 	. 00	3.000	. 000	. 00	1 1	. 0
HYDRAULI C													- 	-	
-8219. 228	l 316. 453	1. 244	317. 697	49. 83		5. 03	322. 72	. 00	2.30	l 2. 96	3.000	. 000	. 00	1 1	. 0
55. 330	 . 0462					 . 0417	2. 31	 1. 24	3. 28	 1. 22	. 013	. 00		PI PE	
-8163. 898		1. 268			17. 54	4. 78	325. 06	. 00	2.30	2. 96	3.000	. 000	. 00	1 1	. 0
- 46. 111 ↑ FILE: LII	 .0462 NE.WSW					. 0378	- 1.74 SLGN Versi	 1. 27 on 14. 07		1. 22	. 013	. 00	. 00	PI PE PAGE	3
	-		Program	Package Se										-	-

WATER SURFACE PROFILE LISTING

Date: 12-15-2023 Ti me: 11: 56: 36

Carlton Oaks Bypass Storm Drain Line 5

*******	******	******	*****	*****	******	******	*****	*****	*****	*****	*****	*****	*****
Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Cri ti cal	Flow Top	Height/	Base Wt		No Wth
Station Elev	(FT)	El ev	(CFS)	(FPS)	Head	Grd. El .	El ev	Depth	Width	Di aFT	or I.D.	ZL	Prs/Pip
- -	-				-								
L/Elem Ch Slope	:				SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Ch
*******	* * * * * * * * *	******	*******	*****	******	******	******	******	******	******	******	****	******

ı	1		1	1	LI NE. OU	IT			1				
-8117. 787	321. 142	1. 314 322. 456	49. 83 16. 73	4.34	326. 80	. 00	2. 30	2. 98	3. 000	. 000	. 00	1	. 0
26. 637	. 0462	- -	- -	. 0332	. 88	1. 31	2. 95	1. 22	. 013	. 00	. 00	PI PE	
-8091. 150	322. 373	1. 363 323. 736	49. 83 15. 95	3. 95	327. 69	. 00	2. 30	2. 99	3. 000	. 000	. 00	1	. 0
18. 115	. 0462	- -	- -	. 0292	. 53	1. 36	2. 75	1. 22	. 013	. 00	. 00	PI PE	
-8073. 035	323. 210	1. 414 324. 624	49. 83 15. 21	3. 59	328. 21	. 00	2. 30	3. 00	3. 000	. 000	. 00	1	. 0
13. 301	. 0462	- -	- -	. 0257	. 34	1. 41	2. 56	1. 22	. 013	. 00	. 00	PI PE	
-8059. 733	323. 825	1. 468 325. 292	49. 83 14. 50	3. 26	328. 56	. 00	2. 30	3. 00	3. 000	. 000	. 00	1	. 0
10. 204	. 0462	- -	- -	. 0226	. 23	1. 47	2. 39	1. 22	. 013	. 00	. 00	PI PE	
-8049. 529	324. 297	1. 523 325. 820	49. 83 13. 82	2. 97	328. 79	. 00	2. 30	3. 00	3. 000	. 000	. 00	1	. 0
8. 027	. 0462	- -	- -	. 0199	. 16	1. 52	2. 22	1. 22	. 013	. 00	. 00	PI PE	
-8041. 502	324. 667	1. 582 326. 250	49. 83 13. 18	2.70	328. 9 5	. 00	2. 30	3. 00	3. 000	. 000	. 00	1	. 0
6. 406	- . 0462	- -	- -	- . 0176	. 11	1. 58	2. 07	1. 22	. 013	. 00	. 00	PI PE	
-8035. 097	324. 964	1. 644 326. 607	49. 83 12. 57	2. 45	329. 06	. 00	2. 30	2. 99	3.000	. 000	. 00	1	. 0
- - 5. 142	. 0462	- -	- -	. 0155	. 08	1.64	1. 92	1. 22	. 013	. 00	. 00	PIPE	
-8029. 955	325. 201	1. 709 326. 910	49. 83 11. 98	2. 23	329. 14	. 00	2. 30	2. 97	3. 000	. 000	. 00	1	. 0
4. 125	. 0462	- -	- -	. 0137	. 06	1.71	 1. 78	1. 22	. 013	. 00	. 00	PI PE	
-8025. 829	325. 392	1. 777 327. 169	49. 83 11. 42	2. 03	329. 20	. 00	2. 30	2. 95	3. 000	. 000	. 00		. 0
- - 3. 274 ♠ FILE: LIN	. 0462	- -	W S P G W - (. 0121	.04	1. 78	 1. 66	1. 22	. 013	. 00	. 00	- PI PE PAGE	1
ጥ FILE. LIN	L. WSW		nckage Serial Numb	er: 711				I	Date: 12-1	15-2023			6
*****	*****	Carlton Oaks Bypass Storm Line 5	Drai n	*****	****		*****	• • • • • • • • • • • •	******	*****	****	*****	**

******	******	*****	******	******	*******	******	******	*****	*****	*****	*****	*****	*****	*****
	Invert	Depth	Water	Q	VeI	Vel	Energy	Super	Cri ti cal	Flow Top	Height/	Base Wt		No Wth
Stati on	Elev	(FT)	El ev	(CFS)	(FPS)	Head	Grd. EI .	El ev	Depth	Width	Di aFT	or I.D.	ZL	Prs/Pip
-									<u> -</u>					
L/EI em	Ch Slope		******			SF Ave			Froude N	Norm Dp	"N"	X-Fall ******	ZR	Type Ch
*****	* * * * * * * * * * * * 	* * * * * * * *	*****	******	****** 	******	*****	*****	******	* * * * * * * *	******	******	* * * * *	******
0000 555	225 542	1 050	227 202	40.00	10.00	1 04	220 24		2 20	0.00	2 000	000	00	1 0
-8022. 555	325. 543	1. 850	327. 393	49. 83	10. 89	1.84	329. 24	. 00	2. 30	2. 92	3.000	. 000	. 00	1 .0
2 547								1 05			l		-	- -
2. 547	. 0462	ı		I	ı	. 0107	. 03	1.85	1. 53	1. 22	. 013	. 00	. 00	PIPE
0000 000	105 //1	1 007	227 500	40.02	10 20	1 /7	220 27	00	1 20	2.00	2 000	000	00	1 0
-8020. 008	325. 661	1. 927	327. 588	49. 83	10. 39	1. 67	329. 26	. 00	2. 30	2. 88	3.000	. 000	. 00	1.0

		LI NE. OU	JT					
- - 1. 910 . 0462	-	- 0095 . 02	 1. 93	 1. 42	1. 22	- . 013	- . 00 . 00	- PI PE
-8018. 098 325. 749 2. 009 327. 758	49. 83 9. 90	 1. 52 329. 28	. 00	2. 30	2. 82	3. 000	. 000 . 00	1 .0
- - 1. 333 . 0462	-	- 0085 . 01	 2.01	 1. 31	1. 22	- . 013	- . 00 . 00	- PI PE
-8016. 765 325. 811 2. 097 327. 908		1. 38 329. 29	. 00	2. 30	2. 75	3.000	. 000 . 00	1 .0
- - . 795 0462	- 	. 0076 01	 2.10	 1. 20	1. 22	. 013	00	- PI PE
-8015. 969 325. 848 2. 192 328. 040	· · · · · · · · · · · · · · · · · · ·	1. 26 329. 30	. 00	2. 30	2. 66	3.000	. 000 . 00	1 .0
- - . 269 0462	-	. 0068	 2.19	 1. 10	1. 22	- . 013	00	- PI PE
-8015. 700 325. 860 2. 297 328. 157	49. 83 8. 58	1. 14 329. 30	. 00	2. 30	2. 54	3.000	. 000 . 00	1 .0
- WALL ENTRANCE	-	-				-	-	-
-8015.700 325.860 3.912 329.772 - -		. 16 329. 93 -	. 00 	1. 69 	4.00	 6. 000 -	4.000 .00	0 .0

TABLE 7-1 (BELOW) PER JULY 2005 SAN DIEGO COUNTY DRAINAGE DESIGN MANUAL

DESIGN VELOCITY (FT/SEC) *	ROCK CLASS	RIP-RAP THICKNESS "T" (MIN)
6–10	NO. 2 BACKING	1.1 FT
10–12	1/4 TON	2.7 FT
12-14	1/2 TON	3.5 FT
1416	1 TON	4.4 FT
16–18	2 TON	5.4 FT

* OVER 20 FT/SEC REQUIRES SPECIAL DESIGN

D = PIPE DIAMETER Ø

W = BOTTOM WIDTH OF CHANNEL

SECTION A-A

NOTES

-ENDWALL (TYPICAL)

 \mathbf{m}

- PLANS SHALL SPECIFY:
 - (A) ROCK CLASS AND RIP-RAP THICKNESS (T). T SHALL BE AT LEAST 1.5 TIMES THE NOMINAL EQUIVALENT DIAMETER OF STONE (d₅₀) OF THE SPECIFIED RIP-RAP.

 (B) FILTER BLANKET MATERIAL, NUMBER OF LAYERS AND
 - ťhíckness.
- RIP-RAP SHALL BE EITHER QUARRY STONE OR BROKEN CONCRETE (IF SHOWN ON PLANS). COBBLES ARE NOT ACCEPTABLE.
- RIP-RAP SHALL BE PLACED OVER FILTER BLANKET MATERIAL, WHICH MAY BE EITHER GRANULAR MATERIAL OR NON-WOVEN GEOTEXTILE FILTER FILTER MATERIAL AT WEIGHT SPECIFIED IN PLANS OR SPECIFICATIONS.
- SEE TABLE 200-1.7 IN THE SAN DIEGO REGIONAL SUPPLEMENT TO GREENBOOK FOR SELECTION OF FILTER BLANKET.
- RIP-RAP ENERGY DISSIPATERS SHALL BE DESIGNATED AS EITHER TYPE 1 OR TYPE 2. TYPE 1 SHALL BE WITH CONCRETE SILL; TYPE 2 SHALL BE WITHOUT SILL.

Revision	Ву	Approved	Date	SAN DIEGO REGIONAL STANDARD DRAWING	RECOMMENDED BY THE SAN DIEGO REGIONAL STANDARDS COMMITTEE
ORIGINAL		Kercheval	12/75	SAN DIEGO REGIONAL STANDARD DRAWING	REGIONAL GIANDARDS COMMITTEE
Add Rip Rap Table		S. Brady	04/06		Matanton 12/17/2015
Edited		T. Stanton	02/09	RIP RAP	Chairperson R.C.E. 19246 Date
Edited	S.S.	T. Regello	03/11	ENERGY DISSIPATER	DRAWING D-40
Edited	T.R.	T. Regello	10/15	LIMITO DIOUI AILI	NUMBER D-40

2D OR 2W (MIN.)

D OR W

HEC-RAS Results
Proposed Conditions
Model
With PF 3 (BSI-100
Year flow)
PF 4 (10-Year Flow)
PF 5 (50-Year Flow)

Refer to the Flood Study (CLOMR) for Carlton Oaks County Club and Resort prepared by Hunsaker and Associates SD, and dated May 2025 for more information regarding the HEC-RAS model

HEC-RAS F	Plan: Plan 01 R	liver: San Dieg	o River Reach Q Total	: Reach 1 Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reacii	River Sta	FIUIIIE	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	Floude # CIII
Reach 1	220	PF 3	50000.00	288.80	307.13	297.37	307.28	0.000362	2.60	17024.01	1773.44	0.12
Reach 1	220	PF 4	5500.00	288.80	300.76	292.51	300.77	0.000039	0.58	8671.03	1604.48	0.04
Reach 1	220	PF 5	19000.00	288.80	300.76	294.29	300.84	0.000468	2.02	8671.03	1604.48	0.12
Reach 1	230	PF 3	50000.00	289.80	307.28	299.08	307.57	0.000870	3.94	12310.10	1545.51	0.18
Reach 1	230	PF 4	5500.00	289.80	300.78	294.28	300.80	0.000116	0.96	5754.35	1258.10	0.06
Reach 1	230	PF 5	19000.00	289.80	301.03	296.06	301.19	0.001218	3.17	5991.57	1261.34	0.20
Reach 1	239	PF 3	50000.00	290.70	307.63	300.56	308.19	0.001760	5.46	8514.67	1224.73	0.26
Reach 1	239	PF 4	5500.00	290.70	300.85	295.07	300.88	0.000276	1.40	3887.02	1112.45	0.09
Reach 1	239	PF 5	19000.00	290.70	301.65	297.86	301.94	0.002182	4.20	4413.12	1121.95	0.26
Reach 1	242	PF 3	50000.00	291.70	308.02	300.88	308.91	0.003408	7.56	6614.34	485.40	0.36
Reach 1	242	PF 4	5500.00	291.70	300.92	294.97	300.96	0.000380	1.67	3289.39	450.42	0.11
Reach 1	242	PF 5	19000.00	291.70	302.17	297.28	302.55	0.002718	4.92	3858.19	456.59	0.30
Reach 1	243		Bridge									
Reach 1	244	PF 3	50000.00	292.20	308.81	300.87	309.55	0.002637	6.93	7210.64	979.16	0.32
Reach 1	244	PF 4	5500.00	292.20	300.98	295.29	301.02	0.000369	1.62	3384.82	637.21	0.11
Reach 1	244	PF 5	19000.00	292.20	302.68	297.44	303.00	0.002194	4.53	4194.57	667.17	0.27
Reach 1	245	PF 3	50000.00	291.03	309.39	301.69	309.97	0.002720	4.84	9334.05	786.71	0.24
Reach 1	245	PF 4	5500.00	291.03	301.06	297.22	301.11	0.002720	1.55	3340.22	715.68	0.12
Reach 1	245	PF 5	19000.00	291.03	303.13	299.02	303.42	0.003654	3.71	4786.11	738.43	0.25
Reach 1	250	PF 3	50000.00	294.72	310.77		311.25	0.001335	5.51	9406.76	904.47	0.27
Reach 1	250	PF 4	5500.00	294.72	301.76		301.84	0.001089	2.25	2474.31	678.69	0.20
Reach 1	250	PF 5	19000.00	294.72	304.81		305.08	0.001700	4.11	4637.00	724.79	0.27
Reach 1	260	PF 3	50000.00	295.59	312.66		313.54	0.003806	7.62	6770.48	692.41	0.40
Reach 1	260	PF 4	5500.00	295.59	303.91		304.15	0.003800	3.93	1401.41	519.10	0.40
Reach 1	260	PF 5	19000.00	295.59	307.40		307.90	0.004811	5.68	3391.28	608.34	0.41
Reach 1	270	PF 3	49000.00	297.09	315.51	309.65	316.08	0.001951	6.34	8662.34	1062.34	0.32
Reach 1	270	PF 4	5000.00	297.09	306.78	303.25	306.88	0.001521	2.57	1951.58	517.69	0.23
Reach 1	270	PF 5	17000.00	297.09	310.40	306.19	310.68	0.001870	4.30	4011.27	635.97	0.29
Reach 1	280	PF 3	49000.00	298.83	316.99		317.15	0.000611	3.21	15317.99	1477.15	0.17
Reach 1	280	PF 4	5000.00	298.83	308.27		308.32	0.000011	1.70	2942.32	1294.04	0.17
Reach 1	280	PF 5	17000.00	298.83	311.72		311.79	0.000692	2.21	7681.20	1421.97	0.17
Reach 1	285	PF 3	49000.00	301.64	317.43	310.95	317.61	0.000712	3.45	14288.21	1522.44	0.20
Reach 1	285	PF 4	5000.00	301.64	309.22	306.74	309.28	0.001500	1.97	2532.34	1067.27	0.23
Reach 1	285	PF 5	17000.00	301.64	312.29	308.79	312.40	0.001104	2.60	6546.33	1460.05	0.22
Reach 1	290	PF 3	49000.00	301.71	317.92	311.89	318.12	0.000835	3.63	13490.48	1603.88	0.21
Reach 1	290	PF 4	5000.00	301.71	310.23	308.34	310.30	0.000635	1.98	2520.64	1236.55	0.24
Reach 1	290	PF 5	17000.00	301.71	313.03	309.87	313.14	0.001177	2.70	6292.97	1510.12	0.23
Reach 1	300	PF 3	46414.34	305.57	318.56	312.42	318.84	0.001410	4.26	11072.05	1620.93	0.24
Reach 1	300	PF 4	4990.29	305.57	311.15	308.61	311.20	0.001194	1.77	2825.88	1065.24	0.18
Reach 1	300	PF 5	16148.56	305.57	313.88	310.22	314.01	0.001479	2.90	5602.02	1257.42	0.22
Reach 1	310	PF 3	46414.34	305.25	319.16	315.31	319.85	0.001522	7.01	7574.74	1572.67	0.42
Reach 1	310	PF 4	4990.29	305.25	311.66	308.58	311.81	0.001322	3.02	1653.83	488.21	0.42
Reach 1	310	PF 5	16148.56	305.25	314.62	310.97	315.02	0.001580	5.16	3502.57	1285.06	0.39
Reach 1	315	PF 3	46414.34	307.53	319.63	316.91	320.39	0.002094	7.35	7118.83	1445.80	0.48
Reach 1	315	PF 4	4990.29	307.53	311.84	311.23	312.42	0.006564	6.20	825.87	364.58	0.70
Reach 1	315	PF 5	16148.56	307.53	315.18	313.88	315.85	0.005154	6.78	2633.74	1189.07	0.67
Reach 1	320	PF 3	46414.34	307.20	320.37	316.74	321.21	0.001709	7.35	6314.77	1757.69	0.48
Reach 1	320	PF 4	4990.29	307.20	312.99	309.99	313.13	0.000680	2.99	1666.45	566.23	0.26
Reach 1	320	PF 5	16148.56	307.20	316.40	312.48	316.77	0.001145	4.92	3279.72	1186.26	0.38
Doo-b 1	222		1-40									
Reach 1	322		Lat Struct									
Reach 1	330	PF 3	48000.00	308.50	321.50	317.23	322.11	0.001317	6.46	7819.46	1112.78	0.39
Reach 1	330	PF 4	4500.00	308.50	313.64	312.33	313.88	0.003185	3.99	1183.03	638.74	0.48
Reach 1	330	PF 5	16000.00	308.50	317.22	314.60	317.48	0.001199	4.22	3993.71	910.80	0.34
Reach 1	340	PF 3	48000.00	309.90	322.38	317.07	322.80	0.001601	5.19	9244.17	1075.64	0.30
Reach 1	340	PF 4	4500.00	309.90	314.69	312.47	314.76	0.001261	2.19	2051.55	716.67	0.22
Reach 1	340	PF 5	16000.00	309.90	317.92	314.16	318.09	0.001446	3.30	4848.90	1013.29	0.26

HEC-RAS Plan: Plan 01 River: San Diego River Reach: Reach 1 (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	345	PF 3	48000.00	309.80	322.96	317.04	323.36	0.001747	5.10	9407.32	1179.13	0.31
Reach 1	345	PF 4	4500.00	309.80	315.06	311.87	315.11	0.000868	1.93	2331.36	706.97	0.19
Reach 1	345	PF 5	16000.00	309.80	318.36	314.19	318.53	0.001175	3.30	4845.90	826.91	0.24
Reach 1	355	PF 3	48000.00	311.40	323.43	318.35	324.06	0.002430	6.41	7483.10	1461.32	0.37
Reach 1	355	PF 4	4500.00	311.40	315.39	313.28	315.50	0.001751	2.59	1737.97	647.15	0.26
Reach 1	355	PF 5	16000.00	311.40	318.74	315.25	319.01	0.001863	4.13	3873.00	919.47	0.30

Exhibit C

FIRM Panel 06073C1634G

NOTES TO USERS

This map is for use in edministering the National Flood Insurance Program. It does not encousantly scently all areas subject to fooding, periously from local distinguit sources of small size. The community map repository should be consulted for possible updeted or additional food hazard information.

To obtain more detained information in areas where State Flored Shrindshere (SFE-c) from the Control of the Con

Consist Base Flood Elevations (BETs) shown on the rap apply only included of DO Necth America Protect Debtor of 1900 (NAVO 58). Lives of the FISHs should be asset that consist flood elevations are also provided in the Elevationy of Elevation to the Consistency of Elevation (Elevation Section 1900). The Consistency of Elevation should be the Elevation of Elevation (Elevation size should be size of the construction and/or floodpilatin management purposes when Sery are higher than the elevations decision on The FISHs.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydrautic considerations with regard to requirements of the historian Electronical Program. Program Proporties and other performs floodway data are provided in the Flood Insurance Study report for the justiciation.

Certain areas not in Special Flood Hazard Areas may be preferred by flood control structures. Partir to Section 2.4 "Flood Protection Measures" of the Floor Insurance Study report for information on flood control streams for this justis-Siction.

The projection used in the proporation of this map uses Universal Treatversal-Assessive (UTH) Zame II. The Sectional desain uses NASID, CRIS (1985) Special, and the Section of the CRIS (1985) Section (

Pool elevations on this map are referenced to the North American Merical Callum of 1993. These fixed elevations must be compared to studium ent ground developer necessarily to severe verafical destinant. For inferenced to the sense verafical destinant. For inferenced many appelled provinces between the National Gaudetic Marical Distant of 1995 and the North American Marian of 1995, which is Marical Callum of 1995 and the North American destinant of 1995, which is Marical Callum of 1995, which is Marian Gaudetic Carvey and the following actions:

NGS Information Services NGAA, NINGS 12 National Condetic Survey SSMC-3, #6290 1315 East-West Highway Silver Spring, Maryland 20019-3252 (201) 713-3247

To obtain current elevation, description, and/or location information for banch man above; se this map, please contact the information Services Brench of the Nation Geodetic Survey at (201) 713-2242 or vinit its website at http://innew.nos.nosss.com/.

Base map information shown on this FIRTM was provided in digital former by the USDA National Agriculture kinagery Propose (MAP) — this information was photogrammetrically compiled at a scale of 1:24,000 from weekst photography detections.

This may infloctin more cetalized and updividual shareas channel configurated has those shows on the previous FRMS for this judicidion. The finodiplinal inflootheys that were benefitined from the produce FRMS may have been adjusted confirms to believe new season channels configurations. As a result, the Proof Find and Finodersy Data tables on the Finod Find and Finodersy Data tables on the Finod Find and Finodersy Data tables on the Finod Find and Finodersy Data tables on the Finod Find and Finodersy Data tables on the Finodership Confirmation of the Finodership Confirmation of the Find Co

of publication. Bocause changes due to amorasifore or the-emerations may be occurred after this may was published, may users should content apopting community officials to verify surent corporate limit locations.

Pleases refer to the securities or cheek the location of the content of the c

Please rade to the separately prised step holes for an overheir rap of the county included of the prised step of the county term of the county below the county of the county term of the county of the county Listing of Communities table consistently bishoon Flood Insulation Program dates for each community as well as a Setting of the panels on which each Community to located.

information on available products associated with this FRM. Available products responsible preduces associated with this FRM. Available products may include preducely issued Letters of May Change, a Flood Insurance Study report ancibic diplate versions of the range. The FCMA May Devoke Center may also be reached by Fax at 1.600-356-9020 and its website at http://exec.fema.gov/

If you have questions about this map or questions concerning the National Floor insurance Program in general, please call 1-877-87MA MAP (1-877-356-2527) or with the FEMA excelled at http://www.elema.goobsainsathfol.

The "profile base lines" depicted on this map represent the hydraulic modeling baselines that makin the food poolies in the FES report. As a result of improved topographic date, the "series base low", in some cases, may devait significantly from the channel certificher or appear outside the SFHA.

Exhibit D

Aerial Photo of the Property

Exhibit E

BSI Report Excerpts

BSI Consultants, Inc.

SAN DIEGO RIVER FLOOD STUDY

HEC 2 RUNS USING SANTEE DISCHARGE RATES

City of Santee

TABLE OF CONTENTS

Santee Runs

I	Input	Data	-	100	Year	Flow
---	-------	------	---	-----	------	------

- II 100 Year Floodplain Results
- III 100 Year Floodway Results
- IV 100 Year Summary Tables

BSI Consultants, Inc.

CITY OF SANTEE PUBLIC WORKS DEPARTMENT

PRELIMINARY

PROCEDURE FOR DESIGN OF STORM DRAINS OUTLETTING IN THE SAN DIEGO RIVER

MARCH 22,1991

PRELIMINARY CITY OF SANTEE PROCEDURE FOR DESIGN OF STORM DRAINS OUTLETTING INTO THE SAN DIEGO RIVER MARCH 22, 1991

PURPOSE

Stormdrains that outlet into the San Diego River are affected by the depth and velocity of flows in the River at the point of connection. Normally, stormdrains are designed for a 100 year storm. Because of widely different times of concentration for river flows and side channel flows, the river and side channel will peak at different times. Stormdrains should be studied for the peak 100 year flow in the drain and also for the flow when the river is at peak depth. The stormdrain should be designed for the most critical of the two conditions.

HYDROLOGY STUDIES

Hydrologic studies shall be in accordance to procedures described in the City of Santee Public Works Standards Manual. The City's Isopluvial map shall be used to determine the precipitation for the 100 year frequency 6 hour design storm. Intensity calculations shall be based on the formula: I = 7.44 $P_6 DA^{(-0.645)}$

100 YEAR PEAK STORM IN SIDE CHANNEL

Hydraulic calculations using the 100 year peak side channel storm flow shall be based on the depth and velocity of flow in the San Diego River based on a 10 year river flow plus two feet. The peak (10 year) discharges in the river, (based on Ordinance No. 204) at various locations are listed below. Flows at connections between these locations shall use the flow for the upper location.

Mile Station	Location	10 Year Peak Discharge (Cubic feet per second)
15.3	Mission Dam	5,500
13.2	0.7 Mile down stream from Sycamore Creek	5,000
12.5	Forester Creek Confluence	4,500
11.4	0.2 Miles upstream from	
	Cuyamaca Street	3,800
10.9	Cottonwood Avenue	3,500
9.5	East City Limits	3,500

100 YEAR PEAK STORM IN SAN DIEGO RIVER

Hydrology calculations for the side channel shall be adjusted before calculating the hydraulic grade line for the condition when the San Diego River is at design flow. The outlet flow shall be adjusted based on the ratio of the rainfall intensites as determined by time of concentration. This ratio shall be used to adjust all upstream pipe flows before making pipe hydraulic calculations. The downstream hydraulic gradeline shall be based on the 100 year peak discharge in the river (based on Ordinance No. 204). The San Diego River 100 year flow, time of concentration and intensity for a 6 hour precipitation of 2.5 inches is as follows:

Mile Station	Location	100 Year Discharge (Cubic Feet/second)	Time of concent (Minutes)	
15.3	Mission Dam	50,000	78.0	1.12
14.28	West Hills Dr.	49,000	77.0	1.13
13.07	Fanita Parkway	49,000	76.0	1.14
12.42	Carlton Hills Blv	d 48,000	76.0	1.14
11,59	Cuyamaca St.	46,000	75.0	1.15
10.76	Magnolia Ave.	45,000	75.0	1.15
9.49	East City Limits	44.000	74.0	1.16

HYDRAULICS OF FLOW IN SAN DIEGO RIVER

The depth of flow and velocity for the design discharge shall be based on river conditions existing at the time of connection. If modifications of river conditions are planned for construction at the same time as the side channel connections, those modifications shall be considered in the hydraulic calculations. Future river improvements that have not been constructed shall not be considered in the hydraulic calculations.

The Corps of Engineers HEC2 program or other method approved in writing by the City Engineer shall be used to determine the river conditions. Results of prior HEC2 studies available at the Public Works Department may be used.

JAH:acs

ATTACHMENTS:

100 Yr. 6 hour Isopluvial Map

100 Yr. Intensity Chart, $P_6 = 2.5$

100 Yr. Intensity Chart, $P_6 = 2.6$

100 Yr. Intensity Chart, $P_6 = 2.7$

SAN DIEGO COUNTY FLOOD CONTROL 100 YEAR INTENSITY CHART

 $P6 = 2.50 I=7.44*P6*T^{(-0.645)}$

TIME (MIN)	(in/hr)	TIME (MIN)	(in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)
		30.0	2.07	60.0	1.33	120.0	0.85	180.0	0.65
6.0	5.86	11.0	3.96	16.0	3.11	21.0	2.61	74.0	1.16
6.1	5.79	11.1	3.94	16.1	3.10	21.1	2.60	74.1	1.16
6.2	5.73	11.2	3.92	16.2	3.09	21.2	2.59	74.2	1.16
6.3	5.67	11.3	3.89	16.3	3.07	21.3	2.59	74.3	1.16
6.4	5.62 5.56	11.4	3.87 3.85	16.4 16.5	3.06 3.05	21.4 21.5	2.58 2.57	74.4 74.5	1.15 1.15
6.6	5.51	11.6	3.83	16.6	3.04	21.6	2.56	74.6	1.15
6.7	5.45	11.7	3.81	16.7	3.03	21.7	2.56	74.7	1.15
6.8	5.40	11.8	3.79	16.8	3.01	21.8	2.55	74.8	
6.9	5.35	11.9	3.77	16.9	3.00	21.9	2.54	74.9	1.15
7.0	5.30	12.0	3.74	17.0	2.99	22.0	2.53	75.0	1.15
7.1	5.25	12.1	3.72	17.1	2.98	22.1	2.53	75.1	1.15
7.2	5.21	12.2	3.71	17.2	2.97	22.2	2.52	75.2	1.15
7.3	5.16	12.3	3.69	17.3	2.96	22.3	2.51	75.3	1.15
7.4	5.12	12.4	3.67	17.4	2.95	22.4	2.50	75.4	1.14
7.5 7.6	5.07 5.03	12.5	3.65 3.63	17.5 17.6	2.94 2.93	22.5 22.6	2.50 2.49	75.5 75.6	1.14
7.7 7.8	4.99 4.94	12.7	3.61 3.59	17.7 17.8	2.91 2.90	22.7	2.48 2.48	75.7 75.8	1.14
7.9	4.90	12.9	3.57	17.9	2.89	22.9	2.47	75.9	1.14
8.0	4.86		3.56	18.0	2.88	23.0	2.46	76.0	1.14
8.1	4.83		3.54	18.1	2.87	23.1	2.45	76.1	1.14
8.2	4.79	13.2	3.52	18.2	2.86	23.2	2.45	76.2	1.14
8.3	4.75	13.3	3.50	18.3	2.85	23.3	2.44	76.3	1.14
8.4	4.71	13.4	3.49	18.4	2.84	23.4	2.43	76.4	1.13
8.5	4.68	13.5	3.47	18.5	2.83	23.5	2.43	76.5	1.13
8.6	4.64	13.6	3.45	18.6	2.82	23.6	2.42	76.6	1.13
8.7		13.7	3.44	18.7	2.81	23.7	2.41	76.7	1.13
8.8	4.57	13.8	3.42 3.41	18.8 18.9	2.80 2.79	23.8	2.41	76.8 76.9	1.13 1.13
8.9 9.0	4.54 4.51	13.9 14.0	3.39	19.0	2.78	24.0	2.39	77.0	1.13
9.1	4.48	14.1	3.37	19.1	2.77	24.1	2.39	77.1	1.13
9.2	4.44	14.2	3.36	19.2	2.77	24.2	2.38	77.2	1.13
9.3	4.41	14.3	3.34	19.3	2.76	24.3	2.38	77.3	1.13
9.4	4.38	14.4	3.33	19.4	2.75	24.4	2.37	77.4	1.13
9.5	4.35	14.5	3.31	19.5	2.74	24.5	2.36	77.5	1.12
9.6	4.32	14.6	3.30	19.6	2.73	24.6	2.36	77.6	1.12
9.7 9.8	4.30	14.7	3.29 3.27	19.7 19.8	2.72 2.71	24.7 24.8	2.35 2.34	77.7 77.8	1.12 1.12
9.9	4.24	14.9 15.0	3.26 3.24	19.9	2.70 2.69	24.9 25.0	2.34	77.9 78.0	1.12
10.0	4.21 4.19	15.1	3.23	20.1	2.69	25.1	2.33	78.1	1.12
10.2	4.16	15.2	3.22	20.2	2.68	25.2	2.32	78.2	1.12
10.3	4.13	15.3	3.20		2.67	25.3	2.31	78.3	1.12
10.4	4.11	15.4	3.19	20.4	2.66	25.4	2.31	78.4	1.12
10.5		15.5	3.18	20.5	2.65	25.5	2.30	78.5	1.12
10.6	4.06 4.03	15.6 15.7	3.16 3.15	20.6 20.7	2.64 2.63	25.6 25.7	2.30 2.29	78.6 78.7	$1.11 \\ 1.11$
10.8	4.01 3.98	15.8 15.9	3.14 3.12	20.8 20.9	2.63 2.62	25.8 25.9	2.29 2.28	78.8 78.9	1.11

SAN DIEGO COUNTY FLOOD CONTROL 100 YEAR INTENSITY CHART

 $P6 = 2.60 I=7.44*P6*T^{(-0.645)}$

TIME (MIN)	(in/hr)	TIME (MIN)	(in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	[in/hr)	TIME (MIN)	(in/hr)
		30.0	2.16	60.0	1.38	120.0	0.88	180.0	0.68
(MIN) 6.1 6.2 6.3 6.4 6.5 6.7 7.7 7.8 7.8 7.9 8.1 8.3	(in/hr) 6.09 6.03 5.96 5.90 5.84 5.73 5.67 5.62 5.57 5.46 5.37 5.23 5.19 5.14 5.10 5.06 5.02 4.98 4.94	(MIN) 30.0 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3	•			-	0.88 2.71 2.71 2.70 2.69 2.68	(MIN)	
8.4 8.5 8.6 8.7 8.9 9.1 9.2 9.3 9.4 9.5 9.9 10.1 10.2 10.3 10.5 10.6 7 10.8 10.9	4.90 4.86 4.76 4.76 4.662 4.56 4.55 4.44 4.35 4.32 4.22 4.17 4.14	13.4 13.5 13.6 13.7 13.9 14.0 14.2 14.3 14.4 14.5 14.6 14.7 14.8 15.6 15.6 15.6 15.6 15.7 15.8 15.8	3.63 3.659 3.558 3.554 3.45 3.445 3.42 3.43 3.33 3.32 3.32 3.32 3.32 3.32	18.4 18.5 18.6 18.7 18.8 19.0 19.2 19.3 19.4 19.5 19.6 19.7 19.9 20.1 20.3 20.4 20.5 20.7 20.8 20.9	2.95 2.95 2.93 2.92 2.87 2.86 2.85 2.84 2.82 2.81 2.77 2.77 2.77 2.77 2.77 2.77	23.4 23.6 23.6 23.8 23.9 24.0 24.2 24.3 24.5 24.6 24.7 24.8 25.1 25.3 25.4 25.5 25.8 25.8 25.9	2.53 2.52 2.55 2.55 2.55 2.48 2.48 2.44 2.44 2.44 2.44 2.44 2.44	76.4 76.5 76.6 76.7 76.8 76.9 77.0 77.1 77.2 77.3 77.6 77.7 77.8 77.9 78.0 78.1 78.3 78.4 78.5 78.6 78.7 78.8	1.18 1.18 1.18 1.18 1.17 1.17 1.17 1.17

SAN DIEGO COUNTY FLOOD CONTROL 100 YEAR INTENSITY CHART

 $P6 = 2.70 I=7.44*P6*T^{(-0.645)}$

TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)	TIME (MIN)	I (in/hr)
		30.0	2.24	60.0	1.43	120.0	0.92	180.0	0.71
6.0 6.1	6.26	11.0 11.1	4.28 4.25	16.0 16.1	3.36 3.35	21.0 21.1	2.82 2.81	74.0 74.1	1.25 1.25
6.2 6.3	6.13	11.2	4.23	16.2 16.3	3.33 3.32	21.2	2.80 2.79	74.2 74.3	1.25 1.25
6.4 6.5	6.01	11.4 11.5	4.18 4.16	16.4 16.5	3.31 3.29	21.4 21.5	2.78 2.78	74.4 74.5	1.25 1.25
6.6 6.7	5.89	11.6 11.7	4.13	16.6 16.7	3.28 3.27	21.6 21.7	2.77 2.76	74.6 74.7	1.24
6.8 6.9	5.78	11.8	4.09 4.07	16.8 16.9	3.26 3.24	21.8	2.75 2.74	74.8 74.9	1.24
7.0 7.1	5.67	12.0	4.04	17.0 17.1	3.23 3.22	22.0 22.1	2.74 2.73	75.0 75.1	1.24
7.2 7.3	5.57	12.2 12.3 12.4	4.00 3.98 3.96	17.2 17.3 17.4	3.21 3.19 3.18	22.2 22.3 22.4	2.72 2.71 2.70	75.2 75.3 75.4	1.24 1.24 1.24
7.4 7.5 7.6	5.48	12.4 12.5 12.6	3.94 3.92	17.5 17.6	3.17 3.16	22.5 22.6	2.70 2.70 2.69	75.5 75.6	1.23
7.7 7.8	5.38	12.7 12.8	3.90 3.88	17.7 17.8	3.15 3.14	22.7 22.8	2.68 2.67	75.7 75.8	1.23
7.9 8.0	5.30	12.9	3.86 3.84	17.9 18.0	3.12 3.11	22.9	2.67 2.66	75.9 76.0	1.23
8.1 8.2	5.21	13.1 13.2	3.82 3.80	18.1 18.2	3.10 3.09	23.1 23.2	2.65 2.64	76.1 76.2	1.23
8.3 8.4	5.13	13.3 13.4	3.78 3.77	18.3 18.4	3.08 3.07	23.3 23.4	2.64 2.63	76.3 76.4	1.23 1.23
8.5 8.6	5.01	13.5 13.6	3.75 3.73	18.5 18.6	3.06 3.05	23.5 23.6	2.62 2.61	76.5 76.6	1.22 1.22
8.7 8.8	4.94	13.7 13.8	3.71 3.70	18.7 18.8	3.04 3.03	23.7 23.8	2.61 2.60	76.7 76.8	1.22 1.22
8.9 9.0	4.87	13.9 14.0	3.68 3.66	18.9 19.0	3.02 3.01	23.9 24.0	2.59 2.59	76.9 77.0	1.22
9.1 9.2	4.80	14.1 14.2	3.64 3.63	19.1 19.2	3.00 2.99	24.1	2.58 2.57	77.1 77.2	1.22
9.3 9.4	4.73	14.3 14.4 14.5	3.61 3.60 3.58	19.3 19.4 19.5	2.98 2.97 2.96	24.3 24.4 24.5	2.57 2.56 2.55	77.3 77.4 77.5	1.22 1.22 1.21
9.5 9.6 9.7	4.67	14.5 14.6 14.7	3.56 3.55	19.6 19.7	2.95 2.94	24.5 24.6 24.7	2.55 2.54	77.6 77.7	1.21
9.8 9.9	4.61	14.8 14.9	3.53 3.52	19.8 19.9	2.93 2.92	24.8 24.9	2.53 2.53	77.8 77.9	1.21
10.0	4.55	15.0 15.1	3.50 3.49	20.0	2.91	25.0 25.1	2.52 2.51	78.0 78.1	1.21 1.21
10.2	4.49	15.2 15.3	3.47 3.46	20.2 20.3	2.89 2.88	25.2 25.3	2.51 2.50	78.2 78.3	1.21 1.21
10.4 10.5	4.44	, 15.4 15.5	3.44 3.43	20.4 20.5	2.87 2.86	25.4 25.5	2.49 2.49	78.4 78.5	1.21 1.20
10.6 10.7	4.35	15.6 15.7	3.41 3.40	20.6	2.85 2.85	25.6 25.7	2.48	78.6 78.7	1.20
10.8 10.9		15.8 15.9	3.39 3.37	20.8 20.9	2.84 2.83	25.8 25.9	2.47 2.46	78.8 78.9	1.20 1.20

PROJECT REPORT

City of Santee
Citywide Drainage Study

Presented to'

City of Santee

February 1990

OSI CONSULTANTS, INC.

APPENDIX IV

DETAILED PRINTOUT

SOIL CLASSIFICATION IS "D"
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

```
WITH 10-MINUTES ADDED = 11.93(MINUTES)
   INITIAL SUBAREA FLOW-LENGTH(FEET) = 700.00
   UPSTREAM ELEVATION = 825.00

DOWNSTREAM ELEVATION = 615.00

ELEVATION DIFFERENCE = 210.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.760
  SUBAREA RUNOFF(CFS) = 16.92
 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 16.92
********************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5
 >>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION = 615.00
DOWNSTREAM NODE ELEVATION = 490.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2000.00
 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 16.92
FLOW VELOCITY(FEET/SEC) = 5.96 FLOW DEPTH(FEET) = 1.19
TRAVEL TIME(MIN.) = 5.59 TC(MIN.) = 17.52
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR; = 2.934
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
 SUBAREA AREA(ACRES) = 71.00 SUBAREA RUNOFF(CFS) = 93.74
 TOTAL AREA(ACRES) = 81.00 TOTAL RUNOFF(CFS) = 110.65
 TC(MIN) = 17.52
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5
 >>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION = 490.00
 DOWNSTREAM NODE ELEVATION = 420.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00
 CHANNEL BASE (FEET) = .00 "Z" FACTOR = 2.000
 MANNINGS FACTOR = ...040 .... MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 110.66
FLOW VELOCITY(FEET/SEC) = 8.72 FLOW DEPTH(FEET) = 2.52
 TRAVEL TIME(MIN.) = 2.87 TC(MIN.) = 20.39
```

```
********************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8
_______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.661
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
 SUBAREA AREA(ACRES) = 53.00 SUBAREA RUNOFF(CFS) = 63.45
 TOTAL AREA(ACRES) = 134.00 TOTAL RUNOFF(CFS) = 174.11
 TC(MIN) = 20.39
******************************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5
 >>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION = 420.00
 DOWNSTREAM NODE ELEVATION =
                    374.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1700.00
 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 174.11
FLOW VELOCITY(FEET/SEC) = 7.99 FLOW DEPTH(FEET) = 3.30
 TRAVEL TIME(MIN.) = 3.55 TC(MIN.) = 23.93
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.399
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
 SUBAREA AREA(ACRES) = 43.00 SUBAREA RUNOFF(CFS) = 46.42
 TOTAL AREA(ACRES) = 177.00 TOTAL RUNOFF(CFS) = 220.54
 TC(MIN) = 23.93
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << < <
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MINUTES) = 23.93
 RAINFALL INTENSITY (INCH./HOUR) =
 TOTAL STREAM AREA (ACRES) = 177.00
 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 220.54
```

```
FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2
 _____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_______
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
  NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION
  WITH 10-MINUTES ADDED = 12.46(MINUTES)
  INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00
  UPSTREAM ELEVATION = 883.00
  DOWNSTREAM ELEVATION = 560.00
  ELEVATION DIFFERENCE =
                   323.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.654
 SUBAREA RUNOFF(CFS) = 16.44
 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 16.44
*********************************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 5
 >>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION =
                    560.00
 DOWNSTREAM NODE ELEVATION = 430.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00
 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 16.44
 FLOW VELOCITY(FEET/SEC) = 6.63 FLOW DEPTH(FEET) = 1.11
 TRAVEL TIME(MIN.) = 3.77 TC(MIN.) = 16.23
*************************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 8
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.082
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
 SUBAREA AREA(ACRES) = 40.00 SUBAREA RUNOFF(CFS) = 55.47
 TOTAL AREA(ACRES) = 50.00 TOTAL RUNOFF(CFS) = 71.92
 TC(MIN) = 16.23
FLOW PROCESS FROM NODE 8.00 TO NODE 5.00 IS CODE = 5
>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION = 430.00
DOWNSTREAN NODE ELEVATION = 374.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1500.00
```

```
CHANNEL BASE(FEET) = .00 "Z" FACTOR MANNINGS FACTOR = .040 MAXIMUM DEPTH(FE
                                   2.000
 CHANNEL FLOW THRU SUBAREA(CFS) = 71.97
FLOW VELOCITY(FEET/SEC) = 7.13 FLOW D
                                   3(FEET) = 2.25
 TRAVEL TIME(MIN.) = 3.51 TC(MIN.) =
                                 ~*******
************
 FLOW PROCESS FROM NODE 8.00 TO NODE
                                 5.00 IS CODE = 8
_____
                                 ~_______
 >>>>ADDITION OF SUBAREA TO MAINLINE P
                                 FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOU
                                 2.717
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT
                               4500
 SUBAREA AREA(ACRES) = 38.00 SUBA RUNOFF(CFS) = 46
TOTAL AREA(ACRES) = 88.00 TOTAL OFF(CFS) = 118.37
                               RUNOFF(CFS) = 46.45
 TC(MIN) = 19.74
**********
                             ******************
 FLOW PROCESS FROM NODE 5.00 T
                            DE 5.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREA CONFLUENCE <>>>>>AND COMPUTE VARIOUS CONFLUI STREAM VALUES <>>>>
CONFLUENCE VALUES USED FOR INDE
                          ENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MINUTES)
RAINFALL INTENSITY (INCH./HOUF 2.72
TOTAL STREAM AREA (ACRES) = 00
TOTAL STREAM RUNOFF(CFS) AT C UENCE = 118.37
 CONFLUENCE INFORMATION:
 STREAM RUNOFF TIME
                        NSITY
                (MI) )
 NUMBER (CFS)
                        H/HOUR)
                        1 220.54 23 : 3
                         2.399
               19 4
       118.37
                         2.717
 RAINFALL-INTENSITY-RACTO
                      LUENCE FORMULA USED FOR 2 STREAMS
 VARIOUS CONFLUENCED RUNG
                      LUES ARE AS FOLLOWS:
     325.08 313.14
 COMPUTED CONFLUENCE DET
                     S ARE AS FOLLOWS:
 RUNOFF(CFS) = 325 0
                     IME(MINUTES) = 23.933
 TOTAL AREA(ACRES) =
                     . 00
***********
                    ~****************
                    5.00 TO NODE 10.00 IS CODE = 3
 FLOW PROCESS FROM NO
------
                   >>>>COMPUTE PIPEF!
                   AVELTIME THRU SUBAREA<
                  >>>> USING COMPUTE
                  DEPTH OF FLOW IN
                  INCH PIPE IS 45.8 INCHES
 PIPEFLOW VELOCITY /SEC.) = 20.2
```

```
UPSTREAM NODE ELEVATION = 374.00
 DOWNSTREAM NODE ELEVATION = 369.00
 FLOWLENGTH(FEET) = 250.00 MANNINGS N = .013
 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
                       325.08
 PIPEFLOW THRU SUBAREA(CFS) =
 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 24.14
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE
                                10.00 IS CODE = 8
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
-----
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.386
 SOIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 21.12 SUBAREA RUNOFF(CFS) = 27.71
 TOTAL AREA(ACRES) = 286.12 TOTAL RUNOFF(CFS) = 352.79
 TC(MIN) = 24.14
               FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 3
 .
 >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < <
DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.6 INCHES
 PIPEFLOW VELOCITY (FEET/SEC.) = 21.5
 UPSTREAM NODE ELEVATION = 369.00
 DOWNSTREAM NODE ELEVATION = 326.00
 FLOWLENGTH(FEET) = 1900.00 MANNINGS N = .013
 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPEFLOW THRU SUBAREA(CFS) = 352.79
 TRAVEL TIME(MIN.) = 1.47 TC(MIN.) = 25.61
     <del>*******************</del>
 FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 8
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.297
 SCIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUEAREA AREA(ACRES) = 41.62 SUBAREA RUNOFF(CFS) = 52.57
 TOTAL AREA(ACRES) = 327.74 TOTAL RUNOFF(CFS) = 405.36
 TC(MIN) = 25.61
 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 7
   _____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<
```

USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 23.60 RAIN INTENSITY(INCH/HOUR) = 2.42
TOTAL AREA(ACRES) = 12.86 TOTAL RUNOFF(CFS) = 17.12

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: BSI CONSULTANTS *******DESCRIPTION OF RESULTS******************************* * CITY OF SANTEE * 100-YEAR RUNOFF * BASIN B SEPTEMBER 1989 * ******************* USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = .90 Advanced Engineering Software [AES] SERIAL No. 107231 VER. 3.4A RELEASE DATE: 4/22/86 *************** FLOW PROCESS FROM NODE 5.00 TO NODE 10.00 IS CODE = >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE << < < USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 18.96 RAIN INTENSITY(INCH/HOUR) = 2.79 TOTAL AREA(ACRES) = 9.15 TOTAL RUNOFF(CFS) = 14.03

```
*****************
 FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 6
   ________
 >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<
UPSTREAM ELEVATION =
                  355.00 DOWNSTREAM ELEVATION =
 STREET LENGTH(FEET) = 370.00 CURB HEIGTH(INCHES) = 6.

STREET HALFWIDTH(FEET) = 15.00 STREET CROSSFALL(DECIMAL) = .0200
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
       **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 24.73
      STREET FLOWDEPTH(FEET) = .42
HALFSTREET FLOODWIDTH(FEET) =
                              14.58
      AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                  5.51
      PRODUCT OF DEPTH&VELOCITY = 2.30
 STREETFLOW TRAVELTIME(MIN) = 1.12 TC(MIN) = 20.08
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.687
 SOIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 14.47 SUBAREA RUNOFF(CFS) = 21.38
 SUMMED AREA(ACRES) = 23.62 TOTAL RUNOFF(CFS) =
 END OF SUBAREA STREETFLOW HYDRAULICS:
 DEPTH(FEET) = .46 HALFSTREET FLOODWIDTH(FEET) = 15.00
 FLOW VELOCITY (FEET/SEC.) = 6.31 DEPTH*VELOCITY = 2.87
FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 3
 >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < <
DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.5 INCHES
 PIPEFLOW VELOCITY (FEET/SEC.) = 9.4
 UPSTREAM NODE ELEVATION = 343.00
 DOWNSTREAM NODE ELEVATION = 340.00
 FLOWLENGTH(FEET) = 270.00 MANNINGS N = .013
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPEFLOW THRU SUBAREA(CFS) = 35.41
 TRAVEL TIME(MIN.) = .48
                       TC(MIN.) = 20.56
FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 8
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.646
 SCIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 7.82 SUBAREA RUNOFF(CFS) = 11.38
 TOTAL AREA(ACRES) = 31.44 TOTAL RUNOFF(CFS) = 46.80
 TC(MIN) = 20.56
```

```
FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE =
>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.0 INCHES
 PIPEFLOW VELOCITY(FEET/SEC.) = 13.5
 UPSTREAM NODE ELEVATION = 340.00
DOWNSTREAM NODE ELEVATION = 320.00
 FLOWLENGTH(FEET) = 850.00 MANNINGS N = .013
 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
 PIPEFLOW THRU SUBAREA(CFS) = 46.80
 TRAVEL TIME(MIN.) = 1.05 TC(MIN.) = 21.61
   FLOW PROCESS FROM NODE 20.00 TO NODE
                               25.00 IS CODE = 8
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.562
 SOIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 23.00 SUBAREA RUNOFF(CFS) = 32.42
 TOTAL AREA(ACRES) = 54.44 TOTAL RUNOFF(CFS) = 79.21
 TC(MIN) = 21.61
****************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 2
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
  NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION
  WITH 10-MINUTES ADDED = 13.38(MINUTES)
  INITIAL SUBAREA FLOW-LENGTH(FEET) = 850.00
  UPSTREAM ELEVATION = 502.00
  DOWNSTREAM ELEVATION = 415.00
ELEVATION DIFFERENCE = 87.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.490
 SUBAREA RUNOFF(CFS) = 15.71
                 10.00 TOTAL RUNOFF(CFS) = 15.71
 TOTAL AREA(ACRES) =
************************
 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 5
 >>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
```

```
UPSTREAM NODE ELEVATION = 415.00
 DOWNSTREAM NODE ELEVATION =
                      365.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1350.00
 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 15.71
FLOW VELOCITY(FEET/SEC) = 4.87 FLOW DEPTH(FEET) = 1.27
 TRAVEL TIME(MIN.) = 4.62 TC(MIN.) = 18.00
FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 8
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.883
 SOIL CLASSIFICATION IS "D"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
 SUBAREA AREA(ACRES) = 31.97 SUBAREA RUNOFF(CFS) = 41.48
 TOTAL AREA(ACRES) = 41.97 TOTAL RUNOFF(CFS) = 57.18
 TC(MIN) = 18.00
FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 5
>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
UPSTREAM NODE ELEVATION = 365.00
 DOWNSTREAM NODE ELEVATION =
                      330.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1250.00
 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 10.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 57.18
 FLOW VELOCITY(FEET/SEC) = 6.08 FLOW DEPTH(FEET) = 2.17
 TRAVEL TIME(MIN.) = 3.42 TC(MIN.) = 21.43
 FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CCDE = 8
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.577
 SOIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 16.10 SUBAREA RUNOFF(CFS) = 22.82
 TOTAL AREA(ACRES) = 58.07 TOTAL RUNOFF(CFS) = 80.00
 TC(MIN) = 21.43
FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 7
```

```
>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE < < < <
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.94 RAIN INTENSITY(INCH/HOUR) = 2.79
 TOTAL AREA(ACRES) = 9.10 TOTAL RUNOFF(CFS) = 13.96
*******************
 FLOW PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 6
 >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA
UPSTREAM ELEVATION = 363.00 DOWNSTREAM ELEVATION = 328.00
 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 6.

STREET HALFWIDTH(FEET) = 15.00 STREET CROSSFALL(DECIMAL) = .0200
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
       **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 19.03
       STREET FLOWDEPTH(FEET) = .37
       HALFSTREET FLOODWIDTH(FEET) = 12.05
       AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.06
       PRODUCT OF DEPTH&VELOCITY = 2.23
 STREETFLOW TRAVELTIME (MIN) = 1.79 TC(MIN) = 20.73
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.632
 SOIL CLASSIFICATION IS "D"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = SUMMED AREA(ACRES) = 16.10 TOTAL RUNOFF(CFS) =
                                           10.13
                                            24.09
 END OF SUBAREA STREETFLOW HYDRAULICS:
 DEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 13.73
 FLOW VELOCITY(FEET/SEC.) = 6.01 DEPTH*VELOCITY = 2.41
******************
 FLOW PROCESS FROM NODE 43.00 TO NODE 44.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 25.66 RAIN INTENSITY(INCH/HOUR) = 2.29
 TOTAL AREA(ACRES) = 9.00 TOTAL RUNOFF(CFS) = 11.35
****************
 FLOW PROCESS FROM NODE 44.00 TO NODE 45.00 IS CODE = 6
 >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<
UPSTREAM ELEVATION = 345.00 DOWNSTREAM ELEVATION = 320.00
 STREET LENGTH(FEET) = 800.00 CURB HEIGTH(INCHES) = 6.
 STREET HALFWIDTH(FEET) = 15.00 STREET CROSSFALL(DECIMAL) = .0200
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
       **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 17.02
      STREET FLOWDEPTH(FEET) = .38
      HALFSTREET FLOODWIDTH(FEET) =
```

AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.78 PRODUCT OF DEPTH&VELOCITY = 1.84

STREETFLOW TRAVELTIME (MIN) = 2.79 TC(MIN) = 28.45

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.146
SOIL CLASSIFICATION IS "D"
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF(CFS) = 11.33
SUMMED AREA(ACRES) = 18.60 TOTAL RUNOFF(CFS) = 22.68
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 14.58
FLOW VELOCITY(FEET/SEC.) = 5.06 DEPTH*VELOCITY = 2.11

END OF RATIONAL METHOD ANALYSIS

APPENDIX V

SUPPORTING DATA

USER SPECIFIED DATA

	NODE	AREA (ACREAS)	LENGTH (FT)	UPSTREAM ELEVATION	DOWNSTREAM ELEVATION	C	P6 (IN)	TC (MIN)	I (IN/HR)	Q (CFS)
λ	19-20	12.86	1300	375	330	0.55	2.5	23.60	2.42	17.12
В	5-10	9.15	1000	400	355	0.55	2.5	18.96	2.79	14.03
В	38-39	9.10	750	385	363	0.55	2.5	18.94	2.79	13.96
В	43-44	9.00	1300	380	345	0.55	2.5	25.66	2.29	11.35
D	1- 2	11.48	1200	790	550	0.55	2.6	13.61	3.59	22.67
D	16-17	2.90	300	470	440	0.55	2.6	7.96	5.08	8.10
D	21-22	6.73	500	613	535	0.55	2.6	8.86	4.74	17.53
D	26-27	7.93	950	475	435	0.55	2.6	18.90	2.91	12.67
D	31-32	4.80	500	515	445	0.55	2.6	9.18	4.63	12.22
D	36-37	4.10	600	740	650	0.55	2.6	9.83	4.43	9.99
E	1- 2	5.00	800	435	415	0.55	2.6	20.63	2.75	7.55
E	16-17	4.00	550	405	385	0.55	2.6	15.10	3.36	7.39
E	26-30	3.00	400	477	455	0.55	2.6	11.22	4.07	6.71
Ţ	1- 2	7.70	850	388	367	0.55	2.5	21.35	2.58	10.92
7	6- 7	6.94	980	414	394	0.55	2.5	24.85	2.34	8.94
K	250-35	CONFLUE	NCE FROM B	ASIN J						
I	450-36	CONFLUE	NCE FROM B	ASIN J						
L	4- 5	6.22	970	530	469	0.55	2.7	16.70	3.27	11.18
L	31-35	12.12	950	485	420	0.55	2.7	16.07	3.35	22.33
K	1- 5	9.91	750	501	431	0.55	2.7	12.88	3.86	21.06
0	11-12	6.50	970	1045	725	0.55	2.7	9.61	4.67	16.68
Q	1- 2	9.50	900	418	390	0.95	2.6	5.55	6.40	57.80
Q	21-22	11.42	1000	366	358	0.7	2.6	24.53	2.46	19.63
Q	26-27	5.72	800	376	355	0.95	2.6	5.53	6.42	34.88
Q	31-32	9.80	800	354	351	0.55	2.6	38.83	1.83	9.84
R	11-12	3.00	300	356	355	0.55	2.6	24.80	2.44	4.02
S	1- 5	8.96	1100	347	342	0.85	2.6	19.41	2.86	21.76
S	21-25	8.04	1000	345	336	0.85	2.6	14.74	3.41	23.31
S	36-40	4.09	750	331	325	0.55	2.6	29.21	2.19	4.94
U	1 -2	4.69	700	530	425	0.55	2.5	10.62	4.05	10.45
V	1- 2	8.00	700	770	700	0.55	2.5	12.16	3.71	16.34
¥	50-55	4.11	700	380	353	0.55	2.5	16.70	3.03	6.84
¥	61-62	4.33	830	357	328	0.55	2.5	18.80	2.80	6.68
Z	60-65	1.65	500	432	400	0.55	2.5	11.86	3.77	3.42

Exhibit F

Site Plan and off-Site Improvements Exhibit

Appendix

Existing & Proposed Hydrology maps

Existing Drainage Exhibit

PA-1 proposed Drainage Exhibit

PA-2 proposed Drainage Exhibit

PA-3 proposed Drainage Exhibit

Access Road proposed Drainage Exhibit

Access Road proposed Drainage Exhibit

References

SEWER LATERAL TABLE LOT INV.ELEV DOORTO NO. OMAIN MAIN EMETA INV.EL. C.R. ELEV DEPTH CR. ELEV REMARKS LOT INV.ELEV DROPTO NO. OMAIN MAIN WALL SEWER P. R. WATER NO. OMAIN MAIN WALL SEWER P. R. WATER 326.8 5.5 326.8 327.0 5.5 327.0 26 331.9 337.2 26 331.6 340.3 26 336.5 340.3 26 336.5 341.8 22 334.9 340.2 28 334.1 336.4 28 334.7 28 334.7 28 334.7 32 334.7 28 334.7 32 334.7 333.4 333.2 332.9 332.7 326.8 325.0 322 · 8 320 · 0 3 | 7 · 3 324.2 28 323.5 28 322.0 26 324.1 26 327.0 38 328.4 40 328.5 50 328.8 320.0 319,9 320.6 326.0 325.8 325.2 320.5 321.3 323.0 323.2 323.2 330.6 331.3 331.6 331.5 318.8 319.3 320.2 330.I 329.6 321.6 322.3 322.7 323.0 329-3 329-0 328-6 328-3 327-9 327-6 326-2 323.0 30 315,8 30 315,1 30 314,5 30 314,5 30 315,1 30 315,6 30 315,6 30 315,6 30 316,6 30 317,0 30 317,9 30 318,5 30 318,5 30 318,3 30 318,3 30 318,3 30 318,3 312 313.9 313 314.3 314 314.5 313.1 322.3 30 318.4 30 318.9 323.7 323.7 322 - 7 323 - 1 323.1 323.4 323.8 313.6 319.2 324.5 323.4 323.6 50 314.3 324.2 324.2

298/299 300 301 302 303 304 211

247 246 245 244 243 242 241 240 239 238 03

EASEMENT

KEY MAP

SEWER

ENSEMENT

SEWER EASEMENT WATER WATER CONTROL OF CASE OF

FROM MISSION GORGE ROAD

36"EL CAPITAN TIE-IN SEE SHEET No. 10

EXSTG. 15-XCP.

NO. 5

APPROVAL FOR WATER AND SEWER

APPROVED BY:

DATE: 6-22-7/

SANTEE COUNTY WATER DISTRICT

ASSIST. MANAGER. ENGINEER

- I. ALL ELECTRICAL & GAS SERVICES WITHIN THIS SUBDIVISION ARE UNDER GROUND INSTALLATIONS. FOR LOCATION OF ELECTRICAL CABLES & GAS PIPING & APPURTENANCES CONTACT: SAN DIEGO GAS & ELECTRIC CO.
- 2. ALL TELEPHONE SERVICES WITHIN THIS SUBDIVISION ARE UNDERGROUND INSTALLATIONS. FOR LOCATION OF CABLES & APPURTENANCES CONTACT: PACIFIC TELEPHONE CO.

CHAIN LINK FENCE FOR EXISTING SEWER M.H.S AS AGREED UPON. CHAIN LINK FERGE FOR EXISTING SEWER M.H. 2 AS MORLE O' 100.

TYPICAL FOR ENTIRE SOUTHERLY BOUNDARY. 12 CHAIN LINK ACCESS

GATES PER CITY OF SAN DIEGO STO. DWG.M. 5. LOCATIONS SHOWN ON KEY
MAP THIS SHEET. EXACT LOCATIONS TO BE DETERMINED IN FIELD BY

ACCESS GATES

S.C.W.D. INSPECTOR

- 1. ALL UNDERGROUND UTILITIES & LATERALS TO BE INSTALLED BEFORE CONSTR. OF CUABS, OR CONCRETE CROSSGUTTERS, OR SURFACING OF STREETS.

 2. EACH LOT WILL BE SERVED BY A 4" DIAMETER SEWER LATERAL. LOCATION
- OF SEWER LATERAL WILL BE DETERMINED IN FIELD BY ENGINEER OF WORK. AS CONSTRUCTED" SEWER LATERALS LOCATION SHALL BE SHOWN ON THESE PLANS ORIGINAL PLANS & SENER LATERAL DATA TRALETO BE COMPLETED PRIOR TO ACCEPTANCE BY THE SANTEE COUNTY WATER DISTRICT. 3. EACH LOT SHALL RECEIVE A 1" COPPER WATER LATERAL. THE LOCATION SHALL
- BE DETERMINED BY THE ENGINEER OF WORK & SHALL BE CONSTRUCTED BE DETERMINED BY THE ENGINEER OF WORK & SHALL BE CONSTRUCTED PERPENDICULAR TO THE CENTER LINE OF THE STREET "AS CONSTRUCTED LOCATIONS SHALL BE SHOWN ON THESE PLANS AND BE SUBMITTED TO THE SANTEE COUNTY WATER DISTRICT FOR APPROVAL PRIOR TO MOTICE OF COMPLETION A CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATION & MAINTAINS ALL EXISTING UNDERGROUND UTILITIES DURING LOASTRUCTION.
- 5. ALL WATER MAINS SHALL BE CLASS ISO & HAVE A MINIMUM COVER OF 36"
- 6. THE LETTER "S" SHALL BE STAMPED AT ALL SEWER LATERAL LOCATIONS. (IN THE CURB).
- 1 MAINTOLE COVERS & GATE WELL COVERS SHALL BE ADJUSTED TO FINISH GRADE. NEW OR EXISTING.
- GRADE. NEW OR EXISTING.

 8. WATER MAIN TRENCH GRADES ARE TO BE A"BELOW BOTTOM OF PIPE GRADES.

 9. CONTRACTOR SHALL UNCOVER LOCATION OF CONNECTIONS PRIOR TO BEGINNING INSTALLATION TO ENSURE CONFORMANCE WITH LINES & GRADES SHOWN ON PLANS, ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE DISTRICT ENGINEER PRIOR TO PROCEEDING.
- IO. THE CONTRACTOR SHALL BE RESPONSIBLE FOR RELOCATION OF ANY EXISTING WATER SERVICE APPURTENANCES.

 11. THE CONSTRUCTION OF ONE PCC STANDARD DRIVEWAY PER LOT, LOCATION TO
- BE DETERMINED IN THE FIELD BY THE ENGINEER OF WORK. PCC SURFACING OFDRIVEWAY TO EXTEND FROM CURB TO PROPERTY LINE. USE STANDARD DWGS.
- 12. A PERMIT SHALL BE ACQUIRED FROM THE COUNTY ROAD DEPARTMENT FOR ANY EXCAVATION WITHIN THE EXISTING RIGHT OF WAY.

SEWER & WATER WORK TO BE DONE

THE WATER & SEWER MAIN CONSTRUCTION SHALL BE DONE IN ACCORDANCE WITH THESE PLANS & THE STANDARD SPECIFICATIONS FOR SEWER & WATER CONSTRUCTION OF THE SANTEE COUNTY WATER DISTRICT ADOPTED NOVEMBER 21st 1966. RESOLUTION No. 1047.

WORK TO BE DONE

THE CONSTRUCTION OF VITRIFIED CLAY PIPE SEWER MAINS SHOWN THUS:

THE IMPROVEMENTS CONSIST OF THE FOLLOWING WORK TO BE DONE IN ACCORDANCE WITH THESE PLANS: THE CURRENT SAN DIEGO COUNTY ENGINEERING DEPARTMENT STANDARD SPECIFICATIONS, AND SPECIAL PROVISIONS FOR SUBDIVISION STREETS AND STANDARD REFERENCE DRAWINGS.

THE CONSTRUCTION OF 4"VITRIFIED CLAY PIPE SEWER LATERALS SHOWN	THUS:	
THE CONSTRUCTION OF CONCRETE MANHOLES SHOWN THUS:		
THE CONSTRUCTION OF STANDARD V.C.P. CLEANOUT SHOWN THUS:		0
THE CONSTRUCTION OF CLASS 150 ASBESTOS CEMENT WATER MAINS SHOW	IN THUS:	
THE CONSTRUCTION OF I" COPPER WATER LATERALS SHOWN THUS:		.—⊩®
THE CONSTRUCTION OF 6" FIRE HYDRANTS AND APPURTENANCES COMPLETE	SHOWN THUS	ς— « Υ.π
THE CONSTRUCTION OF CAST IRON GATE VALVES AND STD. VALVE BOXES WITH CAST	T IRON COVERS	
THE CONSTRUCTION OF BLOWOFF SHOWN THUS:		.——⊸
THE GRADING OF STREETS SHOWN THUS:		ZZ
THE PREPARATION OF SUBGRADE AND PAVING DE STREETS SHOWN THUS		
THE CONSTRUCTION OF G"TYPE"E" CURB & GUTTER SHOWN THUS:	200-3	
THE CONSTRUCTION OF CONCRETE SIDEWALK SHOWN THUS:	2/2-/	26347553457
THE CONSTRUCTION OF STANDARD CONC. DRIVEWAY SHOWN THUS: 207-	1/305-1/306-1	2 478 K
THE INSTALLATION OF ELECTROLIERS SHOWN THUS: EXHIBIT B		
THE INSTALLATION OF STREET NAME SIGN SHOWN THUS: 301		_ ×
THE CONSTRUCTION OF TYPE CS GLIARD FENCES SHOWN THUS:		ا ہے ہے
THE CONSTRUCTION OF X-GUTTER WITH RETURN SEGMENTS	205-/	<u> </u>
THE INSTALLATION OF STREET MONUMENTS 218 & 219		•
THE CONSTRUCTION OF TYPE "A-2" CURB INLET	/00-2	
THE CONSTRUCTION OF STORM DRAIN PIPE		_ =====
THE CONSTRUCTION OF CURB IN LET TYPE "K"	104-2	
THE CONSTRUCTION OF DROP INLET TYPE "I"		
THE CONSTRUCTION OF HEADWALL WING TYPE		. === { (
THE CONSTRUCTION OF HEADWALL SINGLE TYPE	126-1	
THE CONSTRUCTION OF CLEANOUT	. 103-1	

123 224

CARLTON OAKS DRIVE SECTION

AS-BUILT auta B Shurtlett Aug 25 1972 2030 STATE STREET SAN DIEGO, CALIF. 239-387/

Record From: T.M. 2060 SHEET No. 2

Elevation: 324.74

PLANS FOR IMPROVEMENTS IN AND ADJOINING CARLTON OAKS UNIT No.5 Description: 2" BRASS PLUG IN STAIRWAY LANDING

Recommended for Approval, J. Johnson Engineer
Engineer of Work Shurtleft R.C.E. 9954

COUNTY APPROVED CHANGES Approved by Date As Built

RENCH MARK

Location: N.E. CORNER SANTEE SEWAGE TREATMENT PLANT
CONTROL BUILDING Datum: <u>U. S. G. S.</u>

Checked by POR T. M. NO. Approval Date 2929 -5

PRIVATE CONTRACT

COUNTY OF SAN DIEGO

10

MICROTTALLO

PLAN-PROFILE PLATE. B. PLAN-PROFILE PLATE. B CURB RATURN PROFILES PROFILE: CARLTON OAKS DRIVE INWOOD DR. See Sheet Nº 227.48' 12063. Rev. 6-1-67 J.E.H. PRIVATE CONTRACT SANTEE COUNTY WATER DISTRICT SANTEE CALIFORNIA SANTEE PLANS FOR THE IMPROVEMENTS OF WATER & SEWER MAINS IN AND ADJOINING CARLTON COUNTRY CLUB ESTATES UNIT Nº1 Description REVISED BY Date C.S. 2-2-70 R.L.(. 11-24-71 CM 3-13-00 A Changed Street Name LAWRENCE, FOGG, FLORER & SMITH & REPLACED I"P W/ I"C CIVIL ENGINEERS Approval Date
Sept 8,1959 4769 SPRING STREET HO. 9-6194 LA MESA, CALIF HIS DOCUMENT IS FURNISHED FOR INFORMATION ONLY FILE NO. 490-12 AND THE LOCATION OF FACILITIES SHOWN ARE SUBJECT "AS - BUILT" TO FIELD VERIFICATION PRIOR TO CONSTRUCTION PADRE DAM MUNICIPAL WATER DISTRICT (619)258-4635 DATE March 15,1960 42" Bypass